Рис. 7.2.
Разумеется, вокруг этого базового принципа работы за много лет были накручены различные «прибамбасы»: так, существуют реле, которые при каждой подаче импульса тока перебрасываются в противоположное положение (пускатели), реле, контакт в которых может иметь три положения (трехпозиционные: замкнутонейтраль-замкнуто) и т. п., но мы не будем их рассматривать, потому что большинство функций таких специализированных реле давно выполняют логические микросхемы. Мало того, вместо электромагнитных реле во многих случаях (но не во всех!) лучше использовать оптоэлектронные (твердотельные) реле — принцип тот же, но нет никаких соленоидов и движущихся частей. Их мы кратко рассмотрим далее, а пока изучим важнейшие характеристики обычных реле — они мало меняются даже с переходом к твердотельной электронике.
В обычных реле (кроме так называемых
В справочниках приводится либо величина тока через обмотку, либо величина рабочего напряжения, что равнозначно, потому что величина сопротивления обмотки тоже всегда приводится. Обычно конкретные типы реле имеют разновидности с разными сопротивлениями обмоток (это определяется так называемым паспортом реле).
Главный недостаток электромагнитных реле в сравнении с полупроводниковыми устройствами — то, что энергетический порог, с которого начинается управление обмотками, весьма велик. Все же токи в 30–50 мА при напряжениях 5-30 В, т. е. мощности порядка ватта (и это для малогабаритных реле, для реле покрупнее нужна еще большая мощность), — запредельны для современной электроники и являются слишком большой роскошью, если требуется всего только включить нагрузку в виде лампочки. А вот когда необходимо от маломощного сигнала включить, например, мощный нагреватель — тут реле оказываются вне конкуренции. В большинстве современных бытовых нагревательных приборов (в калориферах, электродуховках, хлебопечках и пр.), по моим наблюдениям, для включения-отключения мощного нагревателя применяют именно электромагнитные реле, а не бесконтактные выключатели — так надежнее, дешевле и, к тому же, уровень электромагнитных помех оказывается гораздо ниже.
* * *
Заметки на полях
Кстати, а как определить напряжение срабатывания незнакомого реле, если справочника нет под рукой? Это несложно, только надо иметь регулируемый источник питания. Найдите с помощью тестера выводы обмотки (она имеет обычно сопротивление от десятков ом до нескольких килоом, а если реле в прозрачном корпусе, то найти ее можно просто визуально) и подключите обмотку к источнику. Найдите нормально замкнутые контакты (прозвонкой) и подключите к ним тестер. Выведите источник на минимальное напряжение, включите его, а затем постепенно добавляйте напряжение.
Вместо подключения тестера можно просто поднести реле к уху, но если оно малогабаритное и, тем более, герконовое, то щелчок при срабатывании можно и не услышать. Отметьте значение напряжения, когда реле сработает, а затем умножьте его на полтора — это и будет приблизительное значение номинального напряжения срабатывания.
* * *
Другим недостатком реле, как нагрузки для полупроводниковых приборов, является то, что его обмотка представляет собой индуктивность. Для постоянного тока это просто сопротивление, но в момент переключения, как описано в
Следует учитывать еще одну особенность электромагнитных реле. Ток (напряжение) срабатывания у них намного превышает ток (напряжение) отпускания — так, если в характеристиках указано, что номинальное напряжение реле составляет 27 В, то при этом напряжении гарантируется замыкание нормально разомкнутых до этого контактов. Но совершенно необязательно выдерживать это напряжение длительное время — так, 27-вольтовые реле спокойно могут удерживать контакты в замкнутом состоянии вплоть до того момента, пока напряжение на их обмотке не снизится до 8-10 вольт. Подобный
