Одним из его первых открытий стало то, что свет, излучаемый открытым огнем, имеет характерный оранжевый оттенок. Заинтересовавшись, не является ли Солнце в основе своей громадным огненным шаром, Фраунгофер направил спектроскоп на светило, чтобы посмотреть, присутствует ли в нем свет именно этой длины волны. Вместо этого он, как в свое время Ньютон, увидел полный спектр цветов, но его инструмент был настолько точен, что позволил ему увидеть во многих местах этой радужной линейки — то есть на многих длинах волн — какие-то загадочные темные линии. Вообще-то темные линии в солнечном спектре увидел несколько ранее Уильям Волластон, но если он заметил их штук шесть, то Фраунгофер в конце концов насчитал 574 такие линии.
К 1859 году физик Густав Кирхгоф и химик Роберт Бунзен, знаменитый своей горелкой, продемонстрировали, что такие линии возникают в спектре потому, что атомы различных элементов поглощают свет различных, но вполне конкретных длин волн. Бунзеновская горелка была изобретена, именно затем чтобы измерять эти длины волн в лаборатории. Если вы знаете, скажем, свет какой длины волны поглощает калий, и находите соответствующую темную линию на солнечном спектре, вы можете сделать вывод, что в состав Солнца, должно быть, входит калий. Фраунгофер применил этот метод к Сириусу, проведя, таким образом, первое наблюдение спектра звезды. Посмотрев затем на другие звезды, он обратил внимание, что спектры их различаются между собой. От перспектив захватывало дух: мало того, что мы, как оказалось, можем определить, из чего сделаны звезды, но разные звезды сделаны из разных элементов.
Родилась новая область астрономии — звездная спектроскопия.
Существует два основных механизма образования спектральных линий. Атомы могут поглощать свет определенной длины волны — и тогда возникает линия поглощения, или же они могут излучать такой свет — и тогда возникает эмиссионная линия, или линия излучения. Характерный желтоватый оттенок свету натриевых уличных ламп придает эмиссионная линия натрия. Работая то совместно, то по отдельности, Кирхгоф и Бунзен открыли при помощи своего метода два новых химических элемента — цезий и рубидий. Вскоре после этого два астронома — Жюль Жансен и Норман Локьер — получили еще более впечатляющий результат: они открыли элемент, который — в то время — никто никогда не находил на Земле.
* * *В 1868 году Жансен был в Индии; он отправился туда, чтобы наблюдать солнечное затмение в надежде выяснить химический состав солнечной хромосферы. Это тот слой атмосферы Солнца, что лежит непосредственно над видимым его слоем — фотосферой. Хромосфера светит настолько тускло, что наблюдать ее можно только во время полного солнечного затмения, когда она приобретает красноватый оттенок. Если фотосфера дает в спектре линии поглощения, то в спектре хромосферы мы видим эмиссионные линии. Жансен обнаружил там очень четкую ярко-желтую эмиссионную линию (поскольку линия эмиссионная, ясно, что она исходит из хромосферы) с длиной волны 578,49 нм и решил, что она соответствует натрию. Вскоре после этого Локьер назвал эту линию спектральной линией D3, поскольку у натрия на близких длинах волн уже было две спектральные линии, D1 и D2. Однако у натрия не было линии на длине волны D3, так что эту линию нельзя было считать признаком присутствия натрия.
На самом деле такой линии не было ни у одного известного на тот момент атома! Локьер понял, что они наткнулись на неизвестный химический элемент. Он вместе с химиком Эдуардом Франклендом назвал его гелием, от греческого слова «Гелиос», что означало «Солнце». К 1882 году Луиджи Пальмиери обнаружил линию D3 на Земле в образце вулканической лавы с горы Везувий. Еще через семь лет Уильям Рамзай получил образцы гелия, обработав кислотой минерал под названием «клевеит», содержащий наряду с несколькими редкоземельными элементами уран. Оказалось, что при комнатной температуре гелий — газ.
До сих пор эта история, если оставить в стороне математическую теорию дифракции, имеет отношение в основном к химии. Но далее повествование делает неожиданный поворот — и попадает в немыслимое без математики царство физики элементарных частиц. В 1907 году Эрнест Резерфорд и Томас Ройдс занимались изучением альфа-частиц, излучаемых радиоактивными веществами. Чтобы выяснить, что собой представляют эти частицы, исследователи ловили их в стеклянную трубку, содержащую… пустоту. Вакуум. Частицы проходили через стенку трубки, но далее теряли энергию и выйти уже не могли. В спектре содержимого трубки наблюдалась сильная линия D3. Альфа-частицы оказались ядрами атомов гелия.
Короче говоря, совместные усилия всех этих ученых привели к открытию второго по распространенности после водорода элемента во Вселенной. Но нельзя сказать, что гелий очень уж распространен здесь. Большую часть его мы получаем при перегонке природного газа. Гелий широко применяется в науке и играет важную роль во многих ее областях: без него трудно представить себе метеорологические баллоны, низкотемпературную физику, медицинские аппараты магнитно-резонансного сканирования. Кроме того, потенциально это основное топливо для термоядерного реактора — недорогого и относительно безопасного источника энергии, если кому-то удастся-таки заставить эту штуку работать. Так для чего же мы чаще всего используем это жизненно важное вещество? На надувные шарики для детских праздников.
Большая часть гелия во Вселенной находится в звездах и межзвездных газовых облаках. Дело в том, что гелий первоначально возник на ранних этапах Большого взрыва и, кроме того, является основным результатом термоядерных реакций в недрах звезд. Мы видим его на Солнце не просто потому, что гелий наряду с большим количеством водорода и множеством других элементов (которых там значительно меньше) входит в состав Солнца; Солнце производит его… из водорода.
Атом водорода состоит из одного протона и одного электрона. В атоме гелия два протона, два нейтрона и два электрона; альфа-частица — это тот же гелий, но без электронов. В звезде электроны срываются с ядра и уносятся прочь, и