В своей книге «Путешествия во времени в эйнштейновской Вселенной» (Time Travel in Einstein’s Universe, 2001) я исследовал идеи специальной и общей теории относительности применительно к возможности путешествий во времени. Действительно, общая теория относительности изучает путешествия в прошлое, но не с целью сконструировать машину времени в настоящем, а для того, чтобы понять устройство Вселенной. Решения, допускающие путешествия во времени, – это проверка законов физики в экстремальных условиях. В главе 23 я вернусь к теме путешествий во времени, когда мы станем обсуждать условия, сложившиеся в новорожденной Вселенной.
Глава 22
Контуры Вселенной и Большой взрыв
Автор: Дж. Ричард Готт
Прежде чем обсудить, какова форма Вселенной, для начала вспомним о том, сколько в ней измерений. Как уже упоминалось выше, мы живем в четырехмерной Вселенной. Чтобы локализовать любое событие, нужно указать четыре его координаты: в трех пространственных измерениях и во времени. В своей специальной теории относительности Эйнштейн продемонстрировал, что интервалы между событиями (как минимум в плоском пространстве-времени) можно измерить по формуле ds2 = – dt2 + dx2 + dy2 + dz2. Знак «минус» перед членом dt2 отличает время от любого из пространственных измерений и гарантирует, что скорость света для любых наблюдателей будет оставаться постоянной.
Можно представить себе Вселенную с иным количеством пространственных и временных измерений. Интервалы между событиями во Вселенной с двумя пространственными и одним временным измерением будут вычисляться по формуле ds2 = – dt2 + dx2 + dy2. Люди, живущие в такой Вселенной, даже подозревать не будут о существовании координаты z – они не будут понимать разницы между верхом и низом. Это будут жители Флатландии. На рис. 22.1 изображен ее житель, флатландец, у себя дома.
В доме есть дверь, и флатландец даже может искупаться в бассейне на заднем дворе. Но если ему вздумается попасть в бассейн, он должен будет выйти через переднюю дверь, перелезть через крышу и прямо с крыши нырнуть в бассейн. У него есть глаз: в передней части головы расположен хрусталик, а в задней – сетчатка. Вы уже заметили, что мы видим флатландца в разрезе. Мы можем полностью рассмотреть его внутренности. Можем поставить ему очень точный диагноз по поводу любого недомогания – ведь мы видим все его внутренние органы. У него есть рот, пищевод, желудок, но нет пищеварительного тракта, который проходил бы через все тело! Если бы такой тракт имелся, то флатландец бы попросту развалился пополам! Ему приходится переваривать пищу в желудке и отрыгивать продукты обмена. Флатландец держит газету. Наши газеты двумерные, они представляют собой листы бумаги; но его газета одномерная и напоминает по форме линию. Газетный текст записан азбукой Морзе, он состоит из точек и тире. Если флатландец захочет отправиться спать, то ему придется сделать обратное сальто в постель. Как должен работать его мозг? Во Флатландии невозможно представить себе перекрещивающиеся нейроны (или провода). Но электромагнитные сигналы во Флатландии могут пересекаться, так что вместо нейронов, передающих сигналы от клетки к клетке, здесь будут использоваться просто электромагнитные сигналы[36]. В принципе, у флатландца может быть мозг, но устроен этот мозг будет гораздо сложнее нашего.
В 1880 году Эдвин Эбботт написал чудесную книгу «Флатландия» о существах, обитающих в таком плоском мире. Повествование в этой книге велось от лица Квадрата[37].
Как бы выглядел мир, в котором существовало бы лишь одно пространственное измерение и время? Такой мир назывался бы Лайнландией (он также показан на рис. 22.1). Все объекты там выстроены в одну линию. Мир описывался бы формулой ds2 = – dt2 + dx2. Все люди походили бы на отрезки. Там могли бы жить Король, Королева, Принц и Принцесса, но, живя в Лайнландии, вы могли бы увидеть лишь тех, кто живет бок о бок с вами – справа и слева. Люди выглядели бы как точки. Вам потребовалось бы ладить с соседями – ведь больше вам не суждено было бы ни с кем встретиться. Представляется, что во Флатландии разумная жизнь могла бы возникнуть с большими затруднениями, а в Лайнландии она решительно невозможна.
Рис. 22.1. Флатландия и Лайнландия. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
Кроме того, можно вообразить такие варианты пространства-времени, где больше измерений, чем в нашем. Допустим, мы добавим одно пространственное измерение. Получится ds2 = – dt2 + dx2 + dy2+ dz2 + dw2. В этом континууме четыре пространственных измерения и время. Появилось дополнительное пространственное измерение (w). В 1919 году Теодор Калуца предположил, что такое дополнительное измерение существует. Почему? Просто он обнаружил занятную вещь. Если счесть верными эйнштейновские уравнения общей теории относительности и применить их в таком пятимерном пространстве, причем в измерении w это решение будет однородным, то получится результат, эквивалентный уравнениям общей теории относительности Эйнштейна в четырех измерениях (обычная гравитация) плюс уравнения Максвелла (с поправками, учитывающими эйнштейновскую специальную теорию относительности)! Чудо! Электромагнетизм эквивалентен действию гравитации в дополнительном измерении. Такая теория объединяет гравитацию и электромагнетизм. Кажется невероятным совпадением, что при наличии всего одного дополнительного измерения эйнштейновская общая теория относительности воспроизводит максвелловские уравнения.
При всей привлекательности эта теория представляла очевидную большую проблему: она казалась абсолютно бессмысленной. Почему мы не видим этого дополнительного измерения? В 1926 году Оскар