его описания) не всегда очевидна. Слева вверху 128 × 128 = 16 384 квадрата, которые случайным образом окрашены в чёрный или белый цвет, что обычно нельзя описать, используя менее 16 384 битов. Маленькие фрагменты этого паттерна (вверху посередине и справа) состоят из меньшего числа случайным образом окрашенных квадратов, а значит, их описание требует меньше битов. С другой стороны, нижний левый узор может быть сгенерирован очень короткой (скажем, 100-битовой) программой, поскольку это просто двоичные цифры числа √2 (0 = чёрный квадрат, 1 = белый). Для описания нижнего среднего квадрата потребуется задать дополнительных 14 битов, указывающих, какие цифры числа √2 в нём используются. Наконец, для правого нижнего рисунка потребуется 9 битов — столько же, сколько и для рисунка над ним. Этот паттерн настолько мал, что здесь не поможет знание того, что это часть √2.

Дело ещё сильнее запутывается, когда доходит до информационного содержания малых частей. В верхнем ряду на рис. 12.7 всё обстоит так, как можно ожидать: чем меньше паттерн, тем он проще и тем меньше информации требуется для его описания — нам нужно по 1 биту для описания чёрного или белого пиксела. Но в нижнем ряду мы видим прямо противоположный пример. Здесь меньшее становится большим в том смысле, что средний паттерн сложнее левого, его описание требует больше битов. Теперь недостаточно просто сказать, что это двоичные цифры √2: следует также указать, с каких цифр начинается паттерн, а на это в данном случае потребуется ещё 14 битов. Короче говоря, целое может содержать меньше информации, чем сумма его частей, а иногда даже меньше, чем одна часть.

Наконец, описание двух крайних справа паттернов на рис. 12.7 требует по 9 битов. Мы знаем, что правый нижний паттерн спрятан среди 16 384 цифр √2, но для такого маленького паттерна это знание уже неинтересно и бесполезно: существует лишь 29 = 512 возможных паттернов длиной 9, так что данный узор прячется в большинстве случайно выглядящих строк из тысячи 0 и 1.

На рис. 12.8 изображена красивая математическая структура, известная как множество (фрактал) Мандельброта. Она обладает тем замечательным свойством, что сложные паттерны существуют в ней на сколь угодно малых масштабах, и хотя многие из них кажутся похожими, повторяющихся среди них нет. Насколько сложны два приведённых изображения? Каждое содержит около 1 млн пикселов, которые, в свою очередь, представляются 3 байтами информации[86] (байт равен 8 битам), а значит, для описания каждого изображения требуется несколько мегабайт. Однако левое изображение можно вычислить с помощью программы длиной всего в несколько сотен байтов, многократно выполняющей простое вычисление z2 + c.

Правое изображение тоже простое, поскольку является крошечной частью левого. При этом оно немного сложнее: чтобы указать 20-значный номер одной из 1020 частей, дополнительно требуется 8 байтов информации. Так что вновь меньшее становится большим в том смысле, что видимое информационное содержание увеличивается, когда мы ограничиваем своё внимание малой частью целого, теряя симметрию и простоту, характерные для совокупности частей. А вот ещё более простой пример: алгоритмическое информационное содержание произвольного числа, записываемого триллионом цифр, существенно, поскольку кратчайшая программа, печатающая это число, не может быть чем-то гораздо лучшим, чем просто записью всего триллиона цифр. Однако список всех чисел 1, 2, 3, … может быть сгенерирован совершенно тривиальной компьютерной программой, так что сложность множества меньше сложности типичного его члена.

Рис. 12.8. Несмотря на миллионы искусно раскрашенных пикселов, множество Мандельброта (слева) имеет очень простое описание: точки на рисунке соответствуют тому, что математики обозначают комплексным числом c, а цвет указывает, насколько быстро комплексное число z устремляется к бесконечности, если начать с z = 0 и продолжать вводить его в квадрат, прибавляя c, то есть повторно применяя преобразование z = z2 + c. Парадоксально, но описание правого изображения требует больше информации, несмотря на то, что оно лишь малая часть левого: если разрезать множество Мандельброта примерно на сто триллионов триллионов частей, оно само окажется одной из них, а информация, содержащаяся на правом изображении, по сути, соответствует её адресу внутри большого изображения, поскольку самый экономичный способ описать её — сказать нечто вроде: «31 415 926 535 897 932 384-й фрагмент множества Мандельброта».

Теперь вернёмся к нашей физической Вселенной и почти гуголу битов, которые, по-видимому, требуются для её описания. Стивен Вольфрам, Юрген Шмидхубер и некоторые другие учёные задумались, не является ли по большей части эта сложность иллюзией, подобно сложности множества Мандельброта или левого нижнего паттерна на рис. 12.7, то есть возникающей благодаря ещё не открытому, но очень простому математическому правилу. Хотя эта идея кажется мне элегантной, я с ней не согласен: по-моему, маловероятно, чтобы все числа, характеризующие нашу Вселенную, от паттернов на картах космического микроволнового фона, полученных WMAP, до положения песчинок на пляже, могли сводиться к почти полному ничто за счёт простого алгоритма сжатия данных. На самом деле, как мы видели в гл. 5, космологическая инфляция явно предсказывает, что первичные космические флуктуации, из которых появилась значительная доля этой информации, распределены как случайные числа, для которых существенное сжатие данных невозможно.

Эти первичные флуктуации задают всё, чем ранняя Вселенная отличалась от легко описываемой идеально однородной плазмы. Почему паттерн первичных космических флуктуаций кажется случайным? В гл. 5 мы видели, что, согласно космологической стандартной модели, инфляция порождает все возможные паттерны в различных областях космоса (в различных вселенных мультиверса I уровня). И, поскольку мы сами находимся во вполне типичной части этого мультиверса, открывающийся нам паттерн будет казаться случайным без каких-либо скрытых закономерностей, которые помогли бы сжать содержащуюся в нём информацию. Эта ситуация очень похожа на нижний ряд на рис. 12.7, где наша Вселенная (соотносимая с правым изображением) соответствует небольшой, кажущейся случайной части мультиверса I уровня (соотносимого с левым изображением), который имеет простое описание. Если вы вернётесь к гл. 6, то увидите, что рис. 6.2 становится эквивалентен нижнему ряду на рис. 12.7 (если дополнить последний так, чтобы на нём умещался гуголплекс двоичных цифр числа √2, а правый рисунок содержал около гугола битов, как наша Вселенная). Хотя это ещё не доказано, среди математиков широко признано, что цифры числа √2 ведут себя как случайные числа, поэтому рано или поздно появляется любая возможная последовательность (так же, как где-то в мультиверсе I уровня появляются вселенные со всеми возможными начальными условиями). Это означает, что последовательность из гугола цифр числа √2 ничего не говорит нам о числе √2, а указывает лишь, какое место в последовательности его цифр мы видим. Аналогичным образом, наблюдение гугола битов информации о кажущемся случайным фоне первичных космических флуктуаций, порождённом инфляцией, даёт нам информацию лишь о том, где в огромном постинфляционном пространстве

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×