Ограниченность человеческой природы, разумеется, не прошла незамеченной и нашла свое отражение в литературе. Современный британский писатель Дэвид Лодж пишет об этом в новелле «Оно думает…». Главные герои — учительница английского языка Хелен и носитель искусственного интеллекта Ральф — сидят ночью в уличном джакузи и лениво флиртуют, перебрасываясь глубокомысленными репликами о том, что есть «я»:
Хелен. У этой штуки должен быть термостат. Выходит, она наделена сознанием?
Ральф. Самосознанием — вряд ли. Она же не знает, что ей хорошо. А мы с тобой знаем.
Хелен. А я думала, «я» — это такая вещь, которой не бывает.
Ральф. Если ты имеешь в виду определенную дискретную сущность — то да, не бывает. Но «я» существуют. Мы их все время сочиняем, вот как ты сочиняешь свои рассказы.
Хелен. Ты хочешь сказать, что наша жизнь — это только плод воображения?
Ральф. В некотором смысле — да. Такой способ потратить незадействованные ресурсы мозга. Мы сочиняем истории о себе.
Быть может, в чем-то обманывая себя, мы расплачиваемся за развившиеся у человека уникальные свойства сознания: пусть рудиментарную, но все же способность передавать другим свой осознанный опыт с точно такой оценкой уверенности, которая необходима для выработки полезных коллективных решений. Наша способность к интроспекции и социальному обмену информацией несовершенна, и все же из нее выросла письменность, соборы, реактивные самолеты и рецепт омаров в соусе термидор. Впервые за все время эволюции живое существо получило возможность по собственной воле создавать воображаемые миры: мы в эгоистических интересах манипулируем алгоритмом принятия социальных решений, и для этого притворяемся, обманываем, прикидываемся, выдумываем, лжем, лжесвидетельствуем, отрицаем, вероломствуем, спорим, опровергаем и даем отпор. Обо всем этом писал Владимир Набоков в своих «Лекциях по зарубежной литературе» (1980):
«Литература родилась не в тот день, когда из неандертальской долины с криком «Волк, волк!» выбежал мальчик, а следом и сам серый волк, дышащий ему в затылок; литература родилась в тот день, когда мальчик прибежал с криком «Волк, волк!», а волка за ним и не было».
Сознание — это симулятор виртуальной реальности у нас в мозгу. Но как же тогда принимает решения сам мозг?
4. Автографы сознательной мысли
С появлением методов нейровизуализации в исследовании сознания произошел прорыв. Теперь мы могли видеть, как именно работает мозг, когда фрагмент информации поступает в сознание, и как изменяется работа мозга во время бессознательной обработки данных. Сравнивая эти два состояния, мы смогли получить то, что я зову автографом сознания: маркер, однозначно указывающий на сознательное восприятие стимула. В этой главе я опишу четыре автографа сознания. Сублиминальный стимул способен к глубокому проникновению в кору головного мозга, однако, когда он переходит грань восприятия, активность мозга резко возрастает и перекидывается на прочие области мозга, вызывая внезапное раздражение теменной и префронтальной структур (автограф номер один). На электроэнцефалограмме доступу в сознательный опыт соответствует запоздалая и медленно нарастающая волна P3 (автограф номер два). Проявляется она спустя целую треть секунды после воздействия стимула: наше сознание не поспевает за внешним миром. Поместив глубоко в мозг электроды, позволяющие отслеживать работу мозга, мы можем получить еще два автографа: запоздалый и резкий взрыв высокочастотных колебаний (автограф номер три) и синхронизацию информационного обмена между удаленными друг от друга областями мозга (автограф 4). Все эти факторы являются однозначными признаками процесса сознательной обработки данных.
Люди… представляют как бы тень, в которую мы никогда не можем проникнуть, прямого познания которой не существует.
Марсель Пруст. Германт (пер. А. Франковского)Метафора Пруста — это свежий наряд для поизносившегося клише, представляющего человеческий разум как крепость. Сидя за воздвигнутыми им стенами, скрытые от испытующих взглядов, мы можем свободно думать обо всем, о чем нам будет угодно. Наше сознание — недоступное прочим святилище, в котором наш разум может бродить на свободе, в то время как коллеги, друзья и супруги думают, будто мы внимаем их словам. Джулиан Джейнс изображает это убежище как «тайный театр безмолвных монологов и опережающих советов, невидимое обиталище всех настроений, мечтаний и тайн, неиссякаемый источник разочарований и открытий». Да под силу ли ученым проникнуть в эту твердыню?
Но прошло каких-нибудь два десятка лет, и немыслимое свершилось. В 90-е годы XX века мы научились видеть сквозь череп: японский исследователь Сейдзи Огава с коллегами изобрел метод функциональной магнитно-резонансной томограммы (фМРТ), мощнейшее и притом безвредное решение, позволяющее наблюдать за работой мозга без какого-либо вторжения в организм1. Функциональная МРТ построена на изменениях тока крови в сосудах. Когда активность нейронной цепочки возрастает, нейроглиальные клетки вокруг этих нейронов улавливают всплеск синаптической активности и быстро открывают местные артерии, стремясь таким образом компенсировать возросшее потребление энергии. Две-три секунды спустя кровоток усиливается и принимается снабжать работающие цепочки кислородом и глюкозой. Возрастает количество красных кровяных телец, несущих молекулы гемоглобина со связанным кислородом. Главное достоинство фМРТ заключается в том, что теперь мы можем распознать физические характеристики молекулы гемоглобина на расстоянии: гемоглобин без кислорода работает как маленький магнит, а гемоглобин с кислородом — нет. Аппарат для магнитно-резонансной томографии представляет собой огромный магнит, улавливающий мельчайшие колебания магнитных полей; по этим колебаниям можно воссоздать картину недавней активности нейронов на каждом участке тканей мозга.
Функциональная МРТ отображает работу человеческого мозга с миллиметровым разрешением и может обновлять данные несколько раз в секунду. К сожалению, с помощью фМРТ мы не можем проследить за длительностью нейронной реакции, однако сегодня существуют и другие технологии, позволяющие точно определить время появления электрического заряда в синапсах — и череп для этого вскрывать опять-таки не надо. Ученые доработали старую добрую электроэнцефалограмму (ЭЭГ) — методику записи мозговых волн, которую изобрели еще в 1930-е, — и получили мощнейший аппарат на 256 электродов, позволяющий получать высококачественную цифровую запись деятельности сразу всего мозга с миллисекундным разрешением. Потом, в 1960-е, была изобретена новая, еще более эффективная технология магнитоэнцефалограммы (МЭГ), дающая исключительно точное изображение мельчайших магнитных колебаний, сопутствующих электрическим импульсам в нейронах коры головного мозга. И ЭЭГ, и МЭГ записать очень просто — пациенту либо прикладывают к голове небольшие электрические клеммы (ЭЭГ), либо размещают вокруг головы высокочувствительные детекторы магнитных полей (МЭГ).
Имея в своем распоряжении фМРТ, ЭЭГ и МЭГ, мы получили возможность от начала и до конца проследить за тем, что происходит в мозгу, когда визуальный стимул следует от сетчатки до самых глубин фронтальной коры.