140
Lwoff A. Interaction among virus, cell, and organism. Nobel Lecture, December 11, 1963.
141
Benner S. A. Defining life // Astrobiology, 2010, V. 10, №, 10, 1021–1030.
142
Раутиан А.С. О природе генотипа и наследственности // Журнал общей биологии. 1993. Т. 54. №2, 131–148.
143
Редактируя эту главу, А.В. Марков заметил, что — в противовес этому рассуждению — в молодой Вселенной довольно долго все элементы тяжелее лития существовали именно в мире “платоновских идей”. И все их химические соединения тоже, и все свойства. И пространство белковых последовательностей, о котором идет речь в главе 3, — это тоже в основном мир платоновских идей. Какого-то белка нет в природе, но он возможен, и его свойства предопределены.
144
Stanley W. M. Isolation of a crystalline protein possessing the properties of tobacco mosaic virus // Science, 1935, V. 81, №2113, 644–645.
145
Lwoff A. The concept of virus // Microbiology, 1957, V. 17, №2, 239–253.
146
La Scola et al., 2003.
147
Arslan D. et al. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae // Proceedings of the National Academy of Sciences, 2011, V. 108, №42, 17486–17491.
148
Abergel C., Legendre M., Claverie J. M. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus // FEMS Microbiology Reviews, 2015, V. 39, №6, 779–796.
149
Schulz F. et al. Giant viruses with an expanded complement of translation system components // Science, 2017, V. 356, №6333, 82–85.
150
Colson P. et al. Viruses with more than 1,000 genes: Mamavirus, a new Acanthamoeba polyphagamimivirus strain, and reannotation of Mimivirus genes // Genome Biology and Evolution, 2011, V. 3, 737–742.
151
Legendre M. et al. Genomics of Megavirus and the elusive fourth domain of life // Communicative & Integrative Biology, 2012, V. 5, №1, 102–106.
152
Philippe N. et al. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes // Science, 2013, V. 341, №6143, 281–286.
153
Corradi N. et al. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis // Nature Communications, 2010, V. 1, 77–83.
154
Schulz et al., 2017.
155
Raoult, Forterre, 2008.
156
Forterre P. The origin of DNA genomes and DNA replication proteins // Current Opinion in Microbiology, 2002, V. 5, №5, 525–532.
157
Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells // Biochimie, 2005, V. 87, №9–10, 793–803.
158
Forterre P., Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties // Annals of the New York Academy of Sciences, 2009, V. 1178, №1, 65–77.
159
Shuman S. What messenger RNA capping tells us about eukaryotic evolution // Nature Reviews. Molecular Cell Biology, 2002, V. 3, 619–625.
160
Это связано с тем, что РНК-содержащему вирусу не нужно проникать в ядро, чтобы размножиться. Ему достаточно проникнуть в цитоплазму. Fay N., Pante N. Nuclear entry of DNA viruses // Frontiers in Microbiology, 2015, V. 6, 467.
161
Forterre P. The origin of viruses and their possible roles in major evolutionary transitions // Virus Research, 2006, V. 117, №1, 5–16.
162
Takeuchi N., Hogeweg P. Evolution of complexity in RNA-like replicator systems // Biology Direct, 2008, V. 3, №1, 11.
163
La Scola B. et al. The virophage as a unique parasite of the giant mimivirus // Nature, 2008, V. 455, 100–104.
164
Suttle C. A. Marine viruses — major players in the global ecosystem // Nature Reviews. Microbiology, 2007, V. 5, 801–812.
165
Eugene V. Koonin E. V., Dolja V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements // Microbiology and Molecular Biology Reviews, 2014, V. 78, №2, 278–303.
166
Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life // Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, V. 59, 100–108.
167
Перевод мой.
168
Беляков С.С. Гностик из Уржума // Урал. 2003. №5.
169
Salt G. Experimental studies in insect parasitism. XIII. The haemocytic reaction of a caterpillar to eggs of its habitual parasite // Proceedings of the Royal Society of London, B: Biological Sciences, 1965, V. 162, №988, 303–318.
170
Stoltz D. B., Vinson S. B. Penetration into caterpillar cells of virus-like particles injected during oviposition by parasitoid ichneumonid wasps // Canadian Journal of Microbiology, 1979, V. 25, №2, 207–216.
171
Edson K. M. et al. Virus in a parasitoid wasp: suppression of the cellular immune response in the parasitoid’s host // Science, 1981, V. 211, №4482, 582–583.
172
Stoltz D. B. et al. Polydnaviridae — a proposed family of insect viruses with segmented, double-stranded, circular DNA genomes // Intervirology, 1984, V. 21, №1, 1–4.
173
Fleming J. G., Summers M. D. Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host // Proceedings of the National Academy of Sciences, 1991, V. 88, №21, 9770–9774.
174
Gundersen-Rindal D. et al. Parasitoid polydnaviruses: evolution, pathology and applications: Dedicated to the memory of Nancy E. Beckage // Biocontrol Science and Technology, 2013, V. 23, №1, 1–61.
175
Hayakawa Y. Growth-blocking peptide: an insect biogenic peptide that prevents the onset of metamorphosis //Journal of Insect Physiology, 1995, V. 41, №1, 1–6.
176
Beckage N. E. Parasitoids and polydnaviruses // Bioscience, 1998, V. 48, №4, 305–311
177
Stoltz D. B. The polydnavirus life cycle // Parasites and pathogens of insects, 1993, V. 1, 167–187.
178
Webb B. A. Polydnavirus biology, genome structure, and evolution // The insect viruses. Springer US, 1998, 105–139.
179
Federici B. A., Bigot Y. Origin and evolution of polydnaviruses by symbiogenesis of insect DNA viruses in endoparasitic wasps // Journal of Insect Physiology, 2003, V. 49, №5, 419–432.
180
Webb B., Fisher T., Nusawardani T. The natural genetic engineering