По всей вероятности, первый вирус появился очень быстро — почти сразу же после появления первой рибосомы (независимо от того, возникла ли она в клетке или в какой-то доклеточной системе). Утверждать это можно с уверенностью, потому что возникновение паразитов неизбежно в любом эволюционном процессе. И эта неизбежность, как принято в таких случаях выражаться у ученых, имеет фундаментальный характер. Это означает, что она не является каким-то случайным “привходящим обстоятельством”, а логически вытекает из самой сути рассматриваемых объектов. В любом множестве репликаторов после нескольких циклов размножения (когда накопится случайная изменчивость) обязательно найдутся такие, которые тем или иным способом повысят скорость своей репликации за счет чужих ресурсов. Для систем, состоящих из самореплицирующихся РНК, этот вывод подтвержден математическими моделями[162]. Но понять его легко и “на пальцах”. С точки зрения дарвиновской эволюции повышение скорости собственной репликации за чужой счет попросту слишком выгодно, чтобы упустить такую возможность. Именно поэтому во всех без исключения природных экосистемах есть огромное количество паразитов. Причем эти паразиты могут принадлежать к каким угодно эволюционным ветвям, от вирусов до высших растений и многоклеточных животных. Даже у гигантских вирусов, как мы теперь знаем, есть свои собственные паразиты — вирофаги, оказавшиеся ДНК-содержащими вирусами обычного среднего размера[163]. Это наглядно показывает, насколько глубоко укоренен паразитизм в любой биологической эволюции, или, правильнее сказать, в биологической эволюции как таковой.
В древнейшем РНК-мире между предшественниками вирусов и предшественниками клеток не было никакой разницы. И те и другие реплицировались за счет рибозимов — особых РНК, обладающих каталитическими свойствами (см. главу 9). Рубежом, который резко отделил вирусные формы жизни от клеточных, стало появление трансляции. Приобретя систему трансляции, всякий организм получал возможность синтезировать по собственным инструкциям какой угодно набор белков — сложных молекул, которые, как мы знаем, являются великолепными инструментами для всевозможных взаимодействий с окружающим миром (см. главу 3). Но и цена этого приобретения была достаточно высокой. Система трансляции требует бесперебойного снабжения энергией и к тому же замедляет размножение — просто потому, что она слишком громоздка. Неудивительно, что в тогдашнем живом сообществе тут же нашлись любители пользоваться преимуществами, которые дает система трансляции, но не платить за нее положенную цену. Единственным способом сделать это, конечно же, оказалась манипуляция теми соседями, у которых система трансляции была честно установлена. С этой задачей первые вирусы (которых с этого момента уже можно так называть) вполне справились. А их главным преимуществом стала скорость размножения, доведенная до максимума за счет отказа от всего, от чего только можно отказаться. Этой стратегии вирусы успешно следуют и по сей день[164].
Эволюционным новшеством, маркирующим вирусы “в хорошем смысле этого слова”, стало, как мы уже знаем, создание капсида — футляра, защищающего генетический материал от разрушения внешней средой. Именно поэтому вирусы и называют капсид-кодирующими организмами. Впрочем, иногда против такого названия возражают — надо признать, что не без некоторых оснований. Дело в том, что в природе есть множество еще более простых паразитических репликаторов, которые представляют собой “голые” РНК или ДНК без всяких капсидов, но при этом имеют примерно такой же жизненный цикл, как и у вирусов[165]. И мир этих репликаторов эволюционно связан с миром вирусов. В этом смысле выделение обладателей капсидов в особую категорию выглядит и вправду искусственным. Впрочем, с той или иной точки зрения искусственной выглядит любая система, стремящаяся разбить на четкие категории непрерывно меняющиеся природные объекты. От этого никуда не деться.
В оправдание классификации Рауля — Фортерра можно добавить, что главный объект биологии — все-таки организм, а “голый” репликатор считать таковым, пожалуй, нельзя. Биология вообще изучает историю организмов, а не генетических текстов; последнее — всегда лишь средство. И та система, в создании которой поучаствовали Рауль с Фортерром и о которой пойдет речь дальше в этой книге, — это именно система организмов. Репликаторы, не имеющие ни рибосом, ни капсидов, Рауль и Фортерр называют “сиротами” (orphan replicons)[166]. А граница между этими “сиротами” и настоящими вирусами, по их мнению, проходит по наличию структурных белков вириона. Вполне резонно.
В любом случае мы можем быть уверены, что миру клеточных организмов всегда, на всех этапах его развития и во всех эволюционных разветвлениях, сопутствовала виросфера — колоссальный невидимый мир вирусов и субвирусных частиц, скрытый от обычных органов чувств, но невероятно разнообразный и никогда не прекращавший свою стремительную, запутанную, бурную эволюцию. Иногда виросфера убивала, иногда внезапно делала ценные подарки, а иногда и манипулировала клеточными существами, подталкивая их собственную эволюцию в ту или иную сторону.
Полиднавирусы
У замечательного английского писателя Лоренса Даррелла есть роман “Месье, или Князь Тьмы”, входящий в пенталогию “Авиньонский квинтет”. Герои этого романа, живя в XX веке, сталкиваются с сектой египетских гностиков — продолжателей древних религиозных учений, согласно которым повелитель мира — не Бог, а Князь Тьмы. Гностики убеждены, что весь материальный мир, полный смерти, боли и распада, есть царство зла. Их предводитель, таинственный человек по имени Аккад, читает что-то вроде лекции, в которой поясняет эту мысль, пользуясь примерами из биологии:
“...Самка богомола, которая пожирает своего самца в то самое время, когда он ее оплодотворяет. Паук, который ловит муху в западню. Помпил, закалывающий паука ударом жала. Церцерис, который поражает тремя уколами три главных центра нервной системы златки, а потом его личинка поедает эту златку, еще живую, с чудовищной научной точностью обходя жизненно важные части, пока жертва не доедена до конца. А есть еще и наездники. И траурница, которая присасывается к личинке пчелы-каменщицы, постепенно выпивая ее досуха, и в конце концов съедает искусно сохраненный все еще живой остаток. И филант, убийца пчел, который, прежде чем утащить жертву в норку, давлением вынуждает ее извергнуть свой мед и сосет язык несчастного умирающего насекомого... Что за зрелище это Творение! Всеобщая бойня!”[167]
Надо сказать, что все эти биологические примеры реальны. Скорее всего, Даррелл (как и его персонаж) взял их из книг великого французского энтомолога Жана Анри Фабра. Там можно найти рассказ и про помпила, и про церцериса, и про наездников, и про траурницу, и про филанта. И даже основное место действия “Авиньонского квинтета” по прихотливой случайности близко к местам, где Фабр вел свои исследования (он жил поблизости от Авиньона, на