Раньше грибами считались еще и оомицеты, которые на самом деле, как мы теперь знаем, представляют собой бесхлоропластные разножгутиковые водоросли, относящиеся к группе страменопилов. Среди прочих признаков грибы отличаются от оомицетов способом синтеза лизина — аминокислоты, которая входит в состав белков (см. главу 3). Формула лизина следующая: CH2(NH2)−CH2−CH2−CH2−CH(NH2)−COOH. У большинства эукариот, в том числе и у оомицетов, лизин синтезируется через диаминопимелиновую кислоту (HOOC–CH(NH2)−CH2−CH2−CH2−CH(NH2)−COOH). Это так называемый ДАП-путь. Но у грибов лизин синтезируется другим путем, через альфа-аминоадипиновую кислоту (HOOC–CH2−CH2−CH2−CH(NH2)−COOH). Это так называемый ААА-путь[337]. Из этих двух путей ДАП-путь — намного более распространенный и, судя по всему, более древний. Почему же грибы перешли на ААА-путь? Очевидно, их предки на каком-то эволюционном этапе вообще потеряли способность синтезировать лизин, а потом восстановили ее с нуля[338]. И в соответствии с законом необратимости эволюции восстановление получилось неточным. Но почему же предки грибов разучились синтезировать лизин? Не потому ли, что они были внутриклеточными паразитами и могли получать аминокислоты прямо из клеток хозяев? Это вполне логичное объяснение, но верно ли оно, мы пока не знаем.
Многоклеточные животные — группа, которая по-латыни называется Metazoa. Это единственная во всей живой природе Земли эволюционная ветвь, в которой есть многоклеточные хищники. Обратим внимание, что практически все жизненные формы, о которых мы раньше говорили — колониальные и многоклеточные водоросли, амебы, слизевики, грибоподобные осмотрофы, — возникали в разных группах эукариот по несколько раз. В эволюции это обычное дело. И только многоклеточные хищники составляют тут исключение: у них аналогов нет.
Хищниками, однако, можно назвать далеко не всех многоклеточных животных. Группа Metazoa включает пять эволюционных ветвей: губки, пластинчатые, гребневики, стрекающие и билатерии, они же двусторонне-симметричные (см. рис. 15.10). Губки — это сидячие неподвижные существа, которые проводят жизнь, будучи прикрепленными ко дну или подводным предметам, и питаются за счет фильтрации воды. А единственный представитель пластинчатых — трихоплакс, существо хоть и подвижное, но размером с крупную амебу (порядка миллиметра) и устроенное по меркам многоклеточных животных исключительно просто. Все, на что способны губки и трихоплакс, — это поглощать микроскопические пищевые частицы, которые им попадаются. При таком способе питания многоклеточность хоть и полезна, но не обязательна.
Совершенно иначе обстоит дело у животных, имеющих нервную систему, мышцы и рот. Иногда их называют «настоящими многоклеточными животными». Они могут активно искать и захватывать крупную добычу, нередко сравнимую по размеру с самим хищником. Скорее всего, выход на эволюционный уровень «настоящих многоклеточных животных» произошел дважды: у гребневиков и у общего предка стрекающих с билатериями. Есть серьезные указания на то, что нервная система была независимо «изобретена» в этих двух эволюционных линиях[339] [340] [341]. То же самое относится и к мускулатуре. У гребневиков она относительно слабая, эти животные плавают в основном за счет биения ресничек. У стрекающих и билатерий тоже может сохраняться ресничное движение (коловратки, плоские черви, многие морские личинки), но обычно оно сочетается с гораздо более эффективным мышечным движением.
В группу стрекающих входят медузы и полипы (гидры, актинии, кораллы). Стадии плавающей медузы и сидячего полипа часто чередуются у них в одном жизненном цикле. Почти все стрекающие — хищники. Признак, давший им название, — стрекательные клетки, которые поражают добычу выбрасывающимися нитями. Симметрия тела у стрекающих лучевая, с центральной осью и несколькими равноценными сторонами. Но есть гипотеза, что лучевая симметрия стрекающих — вторичная, возникшая на основе двусторонней симметрии, которая была у их ползающих предков[342]. Если это верно, то первичная лучевая симметрия есть только у гребневиков.
И наконец, двусторонне-симметричные животные, или билатерии, — это необыкновенно разнообразная эволюционная ветвь, богатая оригинальными планами строения (см. рис. 15.11). В теле билатерий выделяются срединная плоскость, спинная и брюшная сторона, передний и задний концы. Часто оно делится еще и на сегменты. На переднем конце обычно концентрируются органы чувств и разрастаются нервные узлы. Чтобы обеспечивать развитие такого тела в каждом жизненном цикле, у билатерий возникло много новых регуляторных генов[343]. А это, в свою очередь, способствовало бурной эволюции новых форм. Некоторые билатерии стали сидячими и (или) сменили двустороннюю симметрию на лучевую. Некоторые, как садовая улитка, приобрели диссимметрию, охватившую значительную часть их тела. Некоторые до предела уменьшились в размере, став невидимыми невооруженным глазом, но сохранив почти все системы органов. Некоторые перевернулись, так что спинная и брюшная стороны у них поменялись местами. Некоторые удлинились до нескольких сотен сегментов, а другие, наоборот, вовсе отказались от сегментации. Некоторые выработали сложный наружный скелет, а некоторые — еще более сложный внутренний. Изучением этого невероятного богатства форм животных занимается сравнительная анатомия — интереснейшая наука, но погружение в нее, к сожалению, увело бы нас слишком далеко за пределы тем, охваченных этой книгой.
Новые горизонты
Знаменитый американский физик-теоретик Джон Арчибальд Уилер однажды сказал: «Мы живем на острове, окруженном морем нашей неосведомленности. По мере того как растет остров знания, растет и береговая линия соприкосновения с неведомым».
Конечно, Уилер был прав. Любой научный прорыв решает и закрывает те или иные вопросы, которые раньше были актуальными (и могли мучить исследователей столетиями). Но одновременно он тут же порождает новые вопросы и ставит новые задачи, недоступные прежним поколениям ученых. Причем этих новых вопросов и задач обычно больше, чем прежних. Так в принципе устроена технология познания. Хорошо это или плохо, но мы никогда не дождемся конца науки. Даже если человечество просуществует несколько миллиардов лет и доживет до превращения Солнца в красный гигант, то и тогда любой ученый, скорее всего, найдет для себя не меньше интересных нерешенных вопросов, чем он может найти сейчас. Хотя, разумеется, вопросы эти к тому времени будут другими — невообразимыми для нас.
Достигнутое в начале XXI века установление истинного (в хорошем приближении) эволюционного древа эукариот вписывается в эту тенденцию. Те, кто