и преобразует энергию. На этой стадии вирус проявляет все физиологические свойства живого организма. А вирион — это покоящаяся стадия, аналогичная неактивным зачаткам, с помощью которых обычно расселяются растения и грибы. С этой точки зрения вирусные частицы подобны, например, спорам гриба-дождевика или летучим пушистым семенам ивы, которые Ричард Докинз назвал «одноразовыми парашютами для ДНК».

Особую наглядность эти соображения обрели после открытия в начале XXI века гигантских ДНК-содержащих вирусов[130]. Такой вирус может заразить, например, пресноводную амебу — одноклеточного эукариота, который двигается, выпуская и втягивая ложноножки. В результате заражения в клетке амебы возникает так называемая «вирусная фабрика» — сложное образование, в котором вирусные белки подчиняют себе клеточный цитоскелет, митохондрии и элементы системы внутренних мембран[131]. Получается совершенно оригинальная структура, не имеющая никаких аналогов в незараженной клетке и работающая только на воспроизводство вируса. В ней реплицируется вирусный геном и собираются новые вирусные частицы. «Вирусные фабрики» — очень широко распространенное явление, по крайней мере у вирусов эукариот[132]. Выглядеть они могут по-разному, иногда скромно, а иногда и грандиозно (по клеточным меркам, конечно). «Вирусная фабрика» гигантского ДНК-содержащего вируса, возникающая внутри амебы, — это уж точно весьма впечатляющая конструкция, расположенная прямо посреди клетки и не уступающая размером ее собственному ядру[133]. Бывали случаи, когда микробиологи даже принимали «вирусные фабрики» за ядра. Очевидно, «вирусная фабрика» — это и есть активная форма вируса, аналогичная зрелому живому организму[134].

У бактерий и архей нет ни цитоскелета, ни митохондрий, ни системы замкнутых внутренних мембран. Поэтому инфицирующие их вирусы не образуют различимых под микроскопом «вирусных фабрик». Вместо этого они превращают в «вирусную фабрику» всю пораженную клетку целиком. Хозяйский геном при этом обычно полностью разрушается (или, по крайней мере, инактивируется), так что в клетке — правильнее сказать, в бывшей клетке — экспрессируется только геном вируса. Особое искусство использования хозяйской клетки выработали, например, некоторые вирусы цианобактерий — организмов, более знакомых нам как синезеленые водоросли. Поражающие их вирусы для краткости называют цианофагами. Существует вирус-цианофаг, который, разрушив зараженную клетку изнутри, начинает синтезировать в ней свои собственные фотосинтетические белки (от аналогичных белков цианобактерии они отличаются особо высокой устойчивостью к ультрафиолету). В итоге в разрушенной клетке создается новый аппарат фотосинтеза, обеспечивающий энергией процессы репликации вирусной ДНК и сборки вирусных частиц[135]. И, таким образом, бывшая клетка цианобактерии превращается не более и не менее как в фотосинтезирующий вирус[136]. Более яркую иллюстрацию существования вирусного метаболизма просто трудно представить.

Исторически сложились два разных подхода к вирусам. Одни авторы считают, что вирус как таковой (the virus «self») — это не что иное, как компактная вирусная частица, то есть вирион[137]. А другие авторы убеждены, что вирион и внутриклеточная «вирусная фабрика» суть равноправные стадии единого жизненного цикла, который надо рассматривать не иначе как целиком[138]. Переходя от первого подхода ко второму, мы получаем заведомо более полную систему. Очевидно, что это уже большое преимущество. В конце концов, любой грамотный зоолог или ботаник согласится, что всегда лучше исследовать полный жизненный цикл интересующего нас организма, чем какую-то одну стадию (неважно, взрослую или нет). Этот подход вполне можно распространить и на вирусы. Более того, он распространяется на них сам собой. В конце концов, не случайно никто никогда не сомневался в том, что вирусами должны заниматься биологи, а не химики.

Представим себе внутриклеточного паразита, в жизненном цикле которого есть две стадии — вегетативная (питающаяся и растущая) и расселительная. Вегетативная стадия обладает метаболизмом, ростом и экспрессией генов, но существовать она может только внутри чужой клетки, потому что нигде больше для нее нет подходящей среды. Расселительная стадия метаболически неактивна, гены в ней не экспрессируются, и вообще никакие жизненные процессы не идут, но зато она благодаря плотной оболочке может перемещаться по планете на большие расстояния, заражая новых хозяев. У клеточного организма такая расселительная стадия называлась бы спорой. Во всей этой картине нет ровно ничего фантастического. Облигатные внутриклеточные паразиты, неспособные жить ни в какой другой среде и размножающиеся неактивными спорами, есть не только среди бактерий, но даже среди эукариот. Ну и что, собственно, мешает считать, что вирион — это спора вируса, а после проникновения в клетку он просто переходит в вегетативную стадию? Да ничего.

3. Вторичность вирусов по отношению к клеткам

В ХХ веке было широко распространено мнение, что вирусы являются не более чем побочными продуктами клеточной жизни — то ли «взбесившимися» фрагментами клеток, освоившими самостоятельное существование, то ли целыми клетками, которые перешли к паразитизму внутри других клеток и в результате до предела упростились. Однако современные исследования вирусных геномов показывают, что это почти наверняка неверно. Дело в том, что обнаружено довольно много специфически вирусных генов, не встречающихся ни в каких клетках, — например, гены, кодирующие белки вирусного капсида (для любой клетки они бесполезны). То же самое можно сказать о некоторых генах и белках, обеспечивающих вирусную репликацию. Биоинформатика довольно быстро выделила набор чисто вирусных белков — в основном обеспечивающих копирование вирусных генов и сборку вирусной частицы, — которые широко распространены в мире вирусов, но не найдены ни у одной клеточной формы жизни[139]. Скорее всего, это означает, что ни у каких клеточных организмов этих белков и соответствующих им генов просто-напросто никогда и не было. А это, в свою очередь, приводит к выводу, что вирусы вовсе не произошли от клеток. Их генетическое разнообразие имеет самостоятельный источник — вероятно, не менее (если не более) древний, чем первая живая клетка.

Правда, гены и белки клеточного происхождения у вирусов тоже встречаются. Но тут есть очень важная тонкость. Вирусный геном довольно четко делится на генетическое «ядро» (общее для многих вирусов и обеспечивающее жизненно важные функции — репликацию, построение капсида) и генетическую «периферию» (разную у разных вирусов и обеспечивающую в первую очередь взаимодействие с клеткой хозяина). Так вот, клеточное происхождение имеют только (или, во всяком случае, почти исключительно) гены «периферии». У крупных вирусов их может быть очень много, и тогда они составляют большую часть генома. Но это все равно гены «периферии», только раздутой. А вот для генов «ядра» генома клеточное происхождение как раз не обнаруживается. Отсюда и сделан вывод, что изначально было очень древнее «ядро», на которое потом уже наслоились разнообразные заимствования из клеток.

Добавим, что аргумент насчет эволюционной вторичности вирусов мог бы лишить их своего места в живой природе, только если бы оказалось, что вирусы — это «сбежавшие» фрагменты клеток,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату