На эту загадку был предложен простой ответ. На самом деле в ядре содержится вдвое больше протонов, чем электронов вокруг ядра, но еще столько же электронов прячется где-то внутри ядра – и суммарный заряд атома по-прежнему равняется нулю.
Однако из квантовой механики следовало, что электроны ни в коем случае не могут быть заключены в ядре. Доказывается это довольно сложно, но суть аргументов приблизительно такова: если элементарные частицы обладают волновыми свойствами, то для того, чтобы заключить их в маленький объем, величина длины волны частицы должна быть меньше размеров этой области пространства. Однако длина связанной с частицей волны в квантовой механике обратно пропорциональна импульсу, который несет эта частица, а поэтому же обратно пропорциональна ее энергии. Если бы электроны были заключены в области размером с атомное ядро, энергия, которой они при этом обладали бы, примерно в миллион раз превосходила бы характерные значения энергии, высвобождаемой электронами при переходах между энергетическими уровнями их атомных орбит.
Как могли электроны набрать такую энергию? Да никак. Ведь даже если бы электроны были прочно связаны с протонами внутри ядра электрическими силами, энергия связи, которая высвобождалась бы при «падении» электронов на ядро, была бы в десять с лишним раз меньше энергии, необходимой для удержания волновой функции квантово-механического электрона в области, не превышающей по размеру атомное ядро.
Так что и здесь числа попросту не сходились.
Физики того времени знали об этой проблеме, но терпели, поскольку ничего не могли сделать. Я подозреваю, что такой агностический подход считался благоразумным, и физики готовы были отложить свое недоверие до тех пор, пока не узнают больше, ведь проблема, о которой идет речь, была связана с самой передовой физикой квантовой механики и атомного ядра. Вместо того чтобы выдвигать экзотические новые теории (наверное, где-то были такие маргинальные построения, но мне о них неизвестно), ученое сообщество постепенно, под давлением экспериментальных данных, вынуждено было преодолеть естественные сомнения и сделать следующий логический шаг: признать, что природа устроена куда сложнее, чем считалось до сих пор.
В 1930 г., примерно в то время, когда Дирак пытался смириться с возможностью того, что его античастицы на самом деле не являются протонами, была проведена серия экспериментов, снабдивших ученых именно теми данными, которые были необходимы для разрешения ядерного парадокса. Поэзия этих открытий может сравниться только с драмой, разыгравшейся в частной жизни сделавших их исследователей.
Макс Планк в свое время участвовал в осуществлении квантовой революции: он разрешил парадокс, связанный со спектрами излучения атомных систем. Поэтому вряд ли стоит удивляться тому, что Планк косвенным образом участвовал и в разрешении парадокса, связанного со строением атомного ядра. Хотя сам он в данном случае не проводил решающих исследований, Планк сумел зато распознать таланты молодого студента Вальтера Боте, изучавшего математику, физику, химию и музыку в Берлинском университете; в 1912 г. Планк принял Боте к себе в качестве докторанта и наставлял затем на протяжении всей его ученой карьеры.
Боте чрезвычайно повезло попасть под руководство Планка и, чуть позже, Ханса Гейгера, создателя знаменитого счетчика заряженных частиц. На мой взгляд, Гейгер – один из самых талантливых физиков-экспериментаторов, обойденных Нобелевской премией. Свою карьеру Гейгер начал с экспериментов (проводившихся совместно с Эрнстом Марсденом), которые Резерфорд использовал при обнаружении атомного ядра. Гейгер тогда только что вернулся из Англии, где работал с Резерфордом, и стал руководить новой лабораторией в Берлине, а одним из первых его шагов в новой должности стал прием на работу Боте в качестве ассистента. Именно в этой лаборатории Боте научился всегда сосредоточиваться на самых важных экспериментах и использовать простые подходы, дающие немедленный результат.
После «вынужденных каникул» протяженностью в пять лет, проведенных во время Первой мировой войны в Сибири в качестве военнопленного, Боте вернулся в лабораторию и наладил замечательное сотрудничество с Гейгером, сменив его в конечном итоге на посту директора лаборатории. В период совместной работы эти ученые первыми стали использовать так называемые «методы совпадений» при исследовании физики атома, а затем и ядра. Используя различные детекторы вокруг мишени и тщательный хронометраж, они научились выделять одновременные события, синхронность которых свидетельствовала о том, что их источником событий было одно и тот же событие атомного или ядерного распада.
В 1930 г. Боте вместе с помощником Гербертом Беккером наблюдал нечто совершенно новое и неожиданное. Бомбардируя ядра бериллия продуктами ядерного распада, известными как альфа-частицы (тогда уже было известно, что альфа-частицы – это ядра гелия), исследователи наблюдали испускание ядром совершенно новой формы высокоэнергетического излучения. У этого излучения было две уникальные особенности: оно обладало большей проникающей способностью, чем гамма-лучи самых высоких энергий, но, подобно гамма-лучам, состояло из электрически нейтральных частиц и потому, проходя сквозь вещество, не ионизировало его атомы.
Новость об этом удивительном открытии быстро разошлась по всем физическим лабораториям Европы. Первоначально Боте и Беккер предполагали, что обнаруженное ими излучение представляет собой какой-то новый вид гамма-лучей. В Париже дочь знаменитой исследовательницы Марии Кюри Ирен Жолио-Кюри и ее муж Фредерик воспроизвели результаты Боте и Беккера и более подробно исследовали загадочное излучение. В частности, они обнаружили, что при бомбардировке этим излучением парафиновой мишени из нее выбиваются протоны невероятно высоких энергий.
Из этого наблюдения стало ясно, что данное излучение не может быть гамма-лучами. Почему?
Ответ на этот вопрос сравнительно прост. Если бросить в подъезжающий грузовик шарик попкорна, вряд ли удастся этим его остановить или хотя бы разбить ему лобовое стекло. Причина в том, что попкорн, даже если бросать его очень и очень энергично, из-за своей малой массы несет совсем небольшой импульс. Чтобы остановить грузовик, вам нужно изменить его импульс на бо́льшую величину, потому что машина, даже если движется медленно, весьма массивна. Чтобы остановить грузовик или сбить с него тяжелый объект, вам придется бросить большой камень.
Аналогично, чтобы выбить из парафина тяжелую частицу, такую как протон, гамма-излучение, состоящее из невесомых фотонов, должно было бы нести огромную энергию (такую, чтобы импульса, переносимого отдельным фотоном, хватало для выбивания из вещества тяжелого протона), а для этого ни в одном известном процессе ядерного распада не нашлось бы достаточного количества энергии, даже по порядку величины.
Удивительно, но супругам Жолио-Кюри (они были современными людьми и оба выбрали для себя