после выхода статьи Глэшоу все известные взаимодействия в природе, за исключением гравитации, предстанут в новом свете и будут поняты, показалось бы в тот момент чистой фантазией.

А ключом ко всему послужила симметрия.

Холодная застывшая реальность: страшно или красиво?

Из чьего чрева выходит лед, и иней небесный, – кто рождает его?

Иов 38:29

Легко испытывать жалость по отношению к несчастным обитателям Платоновой пещеры, которые способны узнать и понять все, что можно узнать о тенях на стене, за исключением того, что всё это – тени. Но внешность бывает обманчива. Что, если мир вокруг нас всего лишь подобная им тень реальности?

Представьте, к примеру, что вы просыпаетесь однажды морозным зимним утром и выглядываете в окно – а все стекло покрыто красивыми ледяными кристаллами, образующими на стекле странные рисунки. Вот примерно как на этой фотографии. Красота изображения поражает отчасти из-за замечательной упорядоченности на малых масштабах, которая сочетается с очевидной беспорядочностью на больших масштабах. Из кристаллов льда выросли великолепные древовидные структуры, выходящие из основания в самых разных направлениях и сталкивающиеся друг с другом под случайными углами. Контраст между упорядоченностью на малых масштабах и явным беспорядком на крупных наводит на мысль, что для крохотных физиков или математиков, живущих в замкнутом пространстве на оси одного из сфотографированных ледяных кристаллов, Вселенная выглядела бы совсем не так, как для нас.

Пространственное направление, соответствующее оси ледяного кристалла, обладало бы особыми свойствами. Природный мир казался бы ориентированным относительно этой оси. Более того, с учетом строения кристаллической решетки электрические силы вдоль оси казались бы совсем не такими, как в перпендикулярном направлении: одна и та же сила проявляла бы себя как разные силы.

Если бы физик или математик, живущий на кристалле, был умен или, подобно математику в Платоновой пещере, удачлив и смог покинуть кристалл, то ему скоро стало бы ясно, что особое направление, определяющее физику привычного ему мира, всего лишь иллюзия. Он понял бы – или, по крайней мере, обоснованно предположил, – что другие кристаллы, возможно, сориентированы в других направлениях. В конечном итоге, если бы этот ученый смог взглянуть на окно снаружи в достаточно крупном масштабе, ему стала бы очевидна фундаментальная симметрия природы в отношении поворотов, проявляющаяся в том, что кристаллы могут расти во всех направлениях.

В центре внимания современной физики лежит представление о том, что мир нашего опыта являет собой подобное случайное стечение конкретных обстоятельств, а не отражает непосредственно фундаментальную реальность. Это представление даже получило самостоятельное забавное название – «спонтанное нарушение симметрии».

Я уже упоминал один вид спонтанного нарушения симметрии, когда речь шла о четности, или симметрии правого и левого. Левая рука человека выглядит иначе, чем его же правая рука, хотя электромагнетизм – сила, определяющая строение больших биологических структур, таких как наши тела, – не различает левое и правое.

Два другие известных мне примера – оба они представлены известными физиками – также помогают высветить разные аспекты спонтанного нарушения симметрии, что может оказаться полезным. Абдус Салам, удостоенный Нобелевской премии в 1979 г. за работу, целиком основанную на этом явлении, описал всем нам знакомую ситуацию. Представьте, что вы с группой людей садитесь за круглый стол, накрытый, скажем, на восемь персон. Когда вы рассаживаетесь, вам, возможно, не очевидно, который бокал на столе предназначен вам, а который – вашему соседу справа или слева. Но, несмотря на правила этикета, предписывающие ставить бокал по правую руку от сидящего, как только кто-то первым возьмет свой бокал в руку, у всех остальных за столом останется только один вариант – если, конечно, вы стремитесь к тому, чтобы никто из участников застолья не остался без выпивки. Несмотря на то, что базовая симметрия накрытого стола очевидна, она нарушается, когда сидящие за столом выбирают направление для винных бокалов.

Йоитиро Намбу – еще один нобелиат, первым из физиков описавший спонтанное нарушение симметрии в физике элементарных частиц, предложил другой пример, который я воспроизвожу с некоторой адаптацией. Возьмите стержень (или даже соломинку для напитков), поставьте его одним концом на стол и надавите сверху на конец стержня. В конечном итоге стержень согнется. Он может согнуться в любом направлении, и если вы проделаете эксперимент несколько раз, то обнаружите, что стержень каждый раз сгибается в новом направлении. Заметим, что до вашего нажатия стержень обладал полной цилиндрической симметрией. После нажатия оказывается выбранным лишь одно направление из многих возможных, определяемое не собственной физикой стержня, а каждый раз случайными характеристиками каждого вашего нажатия. Происходит спонтанное нарушение симметрии.

Если теперь вернуться в мир покрытого изморозью окна, то окажется, что материалы могут изменяться с понижением температуры системы. Вода замерзает, газы сжижаются и т. д. В физике подобные изменения называются фазовыми переходами, и, как показывает пример с окном, нередко, когда система претерпевает фазовый переход, обнаруживается, что симметрии, связанные с одним фазовым состоянием, в другой фазе исчезают. К примеру, до замерзания и превращения в кристаллы льда на оконном стекле капли воды не были столь упорядоченными.

Один из самых поразительных фазовых переходов, известных науке, первым удалось наблюдать голландскому физику Камерлинг-Оннесу 8 апреля 1911 г. Оннес научился – и это уже было замечательно – охлаждать вещества до недостижимых прежде температур, и ему первому удалось получить жидкий гелий, который переходит в сверхпроводящее состояние всего при четырех градусах выше абсолютного нуля. За это экспериментальное достижение он позже был удостоен Нобелевской премии. 8 апреля, охладив ртутную проволочку в ванне из жидкого гелия до температуры 4,2 градуса по абсолютной шкале и измерив ее электрическое сопротивление, он с изумлением обнаружил, что оно внезапно упало до нуля. Токи, однажды возникшие в кольце из такой проволоки, могут циркулировать вечно даже после отключения источника тока. Для обозначения этого замечательного и совершенно неожиданного результата Оннес пустил в оборот слово «сверхпроводимость», чем продемонстрировал, что его способности в деле пиара нисколько не уступают его же экспериментаторским талантам.

Явление сверхпроводимости было настолько неожиданным и странным, что потребовалось почти пятьдесят лет после открытия квантовой механики, которой оно обязано своим существованием, прежде чем Джон Бардин, Леон Купер и Роберт Шриффер в 1957 г. сумели дать ему удивительное физическое объяснение. (Произошло это в том самом году, когда было открыто нарушение четности, а Швингер предложил модель объединения слабого и электромагнитного взаимодействий.) Их превосходная работа строилась на цепочке озарений, случившихся на протяжении нескольких десятилетий. В конечном итоге объяснение это опирается на неожиданное явление, способное возникать в некоторых материалах.

В пустом пространстве электроны отталкивают от себя другие электроны, поскольку обладают зарядами одного знака. Однако при охлаждении некоторых материалов электроны в них способны связываться с другими электронами. Так происходит в веществе потому, что свободный электрон притягивает к себе положительно заряженные ионы.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату