Не все в этой теории появления воды на Земле до конца понятно. В частности, в Солнечной системе есть много участков, по которым разбросаны остатки сыгранного газовыми гигантами бильярдного матча. И у каждого из них своя история. Если бы удалось найти участок с каменистыми телами, похожими на те, которым мы обязаны нашими океанами, это помогло бы нам понять, как Земля стала обитаемой, и продвинуться в поисках второй планеты, способной обеспечить условия для существования жизни.
Как раз неподалеку от наших планет находится полоса таких бесхозных шаров, за которой закрепилось название пояс Койпера. Располагаясь на расстоянии 30–50 а.е., это скопление каменистых тел обращается вокруг Солнца сразу за Нептуном. Самый известный представитель пояса Койпера — карликовая планета Плутон, но считается, что ее окружают приблизительно 100 000 других крупных объектов диаметром более 100 км.
Своим именем пояс Койпера обязан американскому астроному нидерландского происхождения Джерарду Койперу, который высказал предположение, что эти объекты могли сформироваться на ранних этапах истории Солнечной системы. Впрочем, не все так однозначно: за восемь лет до публикации статьи Койпера в 1951 г. с аналогичным предположением выступил ирландский астроном Кеннет Эджворт. Более того, Койпер думал, что эта полоса объектов не просуществует долго: по его мнению, массивный Плутон должен был заставить разбежаться в стороны всех своих соседей. То есть он скорее выступал против возможности существования группы объектов, которая носит его имя. На самом деле масса Плутона намного меньше значения, которым оперировал Койпер, из-за чего он оказывает весьма незначительное влияние на своих попутчиков. Поэтому это скопление объектов часто называют поясом Эджворта — Койпера или используют термин «транснептуновые объекты».
Механизм образования пояса Койпера точно не известен. Не исключено, что это скопление тел сформировалось там, где оно находится сейчас, но его удаленность от Солнца вызывает ряд вопросов. На таком расстоянии частицы пыли в протопланетном диске должны были распределиться вдоль широкой орбиты, что снижало вероятность столкновений, необходимых для образования тел размером 100 км и даже 1000 км. Проблему усугубляет присутствие Нептуна, гравитационное притяжение которого нарушает однородность внутренних участков пояса Койпера, увеличивая скорость движущегося там вещества. Получая ускорение, частицы и планетезимали движутся недостаточно медленно, чтобы слипаться при столкновениях, что еще больше замедляет скорость их роста. Этого влияния можно было бы избежать, если бы объекты внутри пояса Койпера сформировались до появления Нептуна, но тогда скорость накопления ими массы должна была быть еще выше.
Поэтому более вероятным представляется сценарий, при котором сначала эти каменистые тела были выброшены за пределы данного участка под воздействием гравитации самых дальних газовых гигантов — Урана и Нептуна, что обеспечило формирование планетезималей и карликовых планет в более насыщенной столкновениями среде на меньшем расстоянии от Солнца, после чего они были вытолкнуты на задворки планетной системы. Нептун, безусловно, имеет прямое отношение к эволюции пояса Койпера. Его самый большой спутник Тритон когда-то был частью пояса Койпера, но потом оказался во власти Нептуна. В отличие от большинства других спутников планет в нашей Солнечной системе, Тритон движется по своей орбите в направлении, противоположном направлению вращения планеты, и имеет тот же состав, что и Плутон. Это веское доказательство того, что он сформировался не рядом с Нептуном, а попал на его орбиту позже.
Взаимодействие Нептуна с поясом Койпера не ограничивается одним лишь процессом их формирования. Если каменистые объекты из пояса приближаются к массивной планете слишком близко, они могут вновь получить ускорение и быть выброшены во внутреннюю область Солнечной системы. По мере продвижения объекта из пояса Койпера по направлению к Солнцу его ледяное тело начинает улетучиваться, образуя хвост из водяных паров. Так объект становится кометой.
Комета, получившая свое название от греческого слова «длинноволосый», появляется в небе в виде размытого пятна света, за которым тянется длинный хвост. Некоторые кометы движутся по протяженным орбитам вокруг Солнца, появляясь в небе раз в несколько десятилетий или столетий. Другие пролетают мимо нашей планеты только один раз, навсегда покидая Солнечную систему после всего одного танца вокруг Солнца.
На всем протяжении человеческой истории внезапное появление комет среди привычных созвездий воспринималось в качестве доброго или дурного предзнаменования. Особенно сильное впечатление на людей производила комета Галлея. Обращаясь по орбите с периодом 75–76 лет, она была увековечена в 70-метровом гобелене из Байе, созданном в 1070-е гг. и повествовавшем о завоевании норманнами Англии. То же самое явление в 1301 г. вдохновило флорентийского художника Джотто ди Бондоне на использование образа кометы в качестве звезды, которая привела мудрецов к месту рождения Иисуса, на религиозной фреске «Поклонение волхвов»[6]. Своим именем комета обязана британскому астроному Эдмунду Галлею, который первым понял, что упоминания о появлении кометы в 1456, 1531, 1607 и 1682 гг. относятся к одному и тому же объекту, движущемуся по периодической орбите. Галлей предсказал, что комета снова появится в 1758 г. Сам он не дожил до этого момента, но комета действительно появилась точно тогда, когда он предсказал, после чего и получила его имя. В последний раз комета Галлея появлялась в 1986 г., а ее следующий визит состоится в середине 2061 г.
Вопрос о происхождении кометы Галлея остается открытым, так что наши предки были не так уж далеки от истины, когда видели в ней загадочного предвестника из космоса. Совершая полный оборот по орбите менее чем за два столетия, комета Галлея считается, как бы это иронично ни звучало, короткопериодической кометой. Кометы этого класса обычно попадают во внутреннюю часть Солнечной системы из пояса Койпера, получая ускорение при встрече с Нептуном. В результате гравитационного воздействия орбиты этих комет имеют форму сильно вытянутых эллипсов, что отличает их от почти круговых планетных орбит. Однако, учитывая, что и Нептун, и пояс Койпера располагаются приблизительно в том же дискообразном участке пространства, что и первоначальный протопланетный диск, образующиеся в результате их взаимодействия кометы движутся вокруг Солнца в той же плоскости.
Но это не относится к комете Галлея. Ее орбита наклонена под таким большим углом к орбитам планет, что, по сути, комета повернута в другую сторону и обращается вокруг Солнца в противоположном направлении. Таким образом, если большинство короткопериодических комет лишь слегка поднимаются над плоскостью диска (менее чем на 10º), то орбита кометы Галлея наклонена к плоскости эклиптики на 162º. Столь необычная орбита свидетельствует о том, что комета начала свой путь в другом месте, а именно в облаке Оорта на краю Солнечной системы.
В отличие от объектов в поясе Койпера, вытолкнутых