9.
А сега нека поразширим нашите хоризонти. Досега ние разгледахме само нашата планета като източник на сурови материали. Но Земята съдържа само около една тримилионна част от общата маса вещества на Слънчевата система. Наистина повече от 99,9 процента от тази материя се пада на Слънцето, откъдето на пръв поглед изглежда невъзможно да бъде извлечена. Обаче общата маса на планетите, техните спътници и астероиди превишава 450 пъти масата на Земята. Най-голямата част от тази „извънслънчева“ материя се намира на Юпитер (183 пъти по-голяма от земната), но Сатурн, Уран и Нептун също така представляват значителни находища (респективно 95,15 и 17 пъти по-големи от земната маса).
Като се вземат предвид съвременните астрономически размери на разноските, свързани с космическите полети (доставката на всеки килограм полезен товар дори и на най-близката околоземна орбита ще струва няколко хиляди долара), тогава предположението, че ние някога ще можем да добиваме в който и да било край на Слънчевата система и да превозваме оттам милиони тона полезни изкопаеми, изглежда чиста фантастика. Дори и превозването на злато едва ли би си покрило разноските; само скъпоценните камъни биха донесли някаква печалба.
Обаче такова гледище носи печата на съвременното примитивно ниво на космонавтика и на крайно ниската ефикасност на нейните средства. Не е много приятно да се признае това, но ако ние умеехме наистина ефективно да използуваме енергията, с която разполагаме, тогава издигането на един фунт полезен товар в космоса би ни коствало само 25 цента, а доставката му от Луната на Земята ще ни струва не повече от 1–2 цента. По ред причини тези цифри представляват непостижим идеал, ала те показват колко обширен е просторът за усъвършенствувания. Някои изследвания в областта на ядрените двигатели дават основание да се предполага, че дори и в рамките на предвидимото развитие на техниката космическите полети не ще струват повече от полетите на реактивните самолети, а превозването на товар може да стане и много по-евтино.
Нека се заемем най-напред с Луната. Ние все още не знаем нищо за нейните минерални ресурси, обаче те трябва да са огромни, а в известно отношение нейните богатства може да се окажат и уникални. Тъй като Луната е лишена от атмосфера и притежава сравнително слаба гравитация, то от нейната повърхност дадено вещество би могло да бъде „метнато“ долу на Земята с помощта на електрокатапулти или пускови релсови устройства. За тази цел няма да има нужда от ракетно гориво — достатъчно ще е да се изразходва електроенергия само за няколко цента, за да се отправи „надолу“ килограм полезен товар. Основните разноски по
Когато на Луната се устроят крупни промишлени предприятия, изглежда теоретически възможно произведените там материали да бъдат изпращани на Земята в големи количества на борда на товарни кораби роботи. Тия превозни апарати биха могли да се приземят на предварително подготвени площи, след като намалят в горните слоеве на атмосферата огромната скорост, с която ще пътуват към Земята (около 40000 километра в час). Изразходваното ракетно гориво в този случай ще бъде твърде малко, тъй като за ориентация на кораба и направляването му в участъка на пускането главен източник на енергия ще бъде станционарната силова станция на метателното устройство, построено на Луната.
Но нека отидем по-навътре в космическото пространство. Ние знаем, че в Слънчевата система „блуждае“ огромно количество метал (между другото и най-висококачествен никел и желязо) под формата на метеорити и астероиди. Най-големият астероид, Церера, има диаметър, равен на 720 километра, а астероиди с диаметър повече от километър и половина може да съществуват с хиляди. Интересно е да се отбележи, че един само железен астероид с диаметър от 270 метра би бил напълно достатъчен да удовлетвори световните нужди от желязо за една година.
Като източници на суровини астероидите са особено привлекателни, защото тяхното гравитационно поле е крайно слабо. Не е нужна почти никаква енергия, за да се напусне един астероид: човек лесно би могъл да „скочи“ от един по-малък астероид и да се отдалечи от него. Когато ядрените ракетни двигатели бъдат усъвършенствувани, вероятно ще стане възможно да се изблъскват астероидите (поне най-малките) от техните орбити и да се вкарват в такива траектории, които ще ги изведат, да речем, след една година в непосредствена близост до Земята. Тук те биха могли да бъдат задържани в околоземна орбита, докато бъдат раздробени на подходящи по големина късове; възможно е също така те целите да бъдат сваляни на Земята.
За тази, последната операция, не ще трябва да се изразходва почти никакво гориво, тъй като цялата работа ще извърши гравитационното поле на Земята. Обаче тя ще изисква изключително точно и абсолютно безопасно управление, понеже последствията и от най-малката грешка могат да бъдат тъй страшни, че е по-добре да не говорим за тях. Дори и най-малкият астероид е способен да срине до основи един голям град, а сгромолясването на астероид, който съдържа едногодишен запас от желязо за цялата планета, би било еквивалентно на взрив с мощност от 10 000 мегатона. При неговото падане би се образувала „яма“ поне десет пъти по-голяма от Аризонския кратер; така че може би ще е по-добре да използуваме Луната, а не Земята като „разтоварителна площадка“.
Ако някога човечеството открие начин за управление на гравитационните сили (този проблем разгледахме в глава 5), тогава подобни космически инженерни мероприятия ще станат много по- привлекателни. Възможно е тогава да ни се удаде да акумулираме огромната енергия на падащия астероид, и да я използуваме така, както днес ние използуваме енергията на падащата вода. Тази енергия ще бъде, така да се каже, допълнителна премия към цялата желязна планина, която ние плавно ще спуснем на Земята. Наистина тази идея е чиста фантазия, обаче ние не трябва да отхвърляме нито един проект, в който се спазва законът за съхраняване на енергията.
Извличането на материали от планетите гиганти е много по-малко привлекателна идея от разработката на астероидите. Мощните гравитационни полета правят разрешаването на тая задача трудно и крайно скъпо начинание дори и при наличността на неограничени ресурси от термоядрена енергия; а без такава предпоставка този въпрос изобщо не си заслужава труда да бъде разглеждан. Освен това планетите от рода на Юпитер вероятно се състоят почти изключително от малоценни леки елементи, като водород, хелий, въглерод и азот; всички по-тежки елементи са заровени на хиляди километри в недрата на тези планети.
Аналогични съображения в още по-голяма степен се отнасят и до Слънцето. Обаче и този случай има едно благоприятно обстоятелство, което някой ден ние може би ще успеем да използуваме. Веществото на Слънцето се намира в плазмено състояние — тоест нагрято е до такава висока температура, че всички негови атоми са йонизирани. Плазмата е много по-добър проводник на електрическия ток от който и да е метал; и управлението й посредством магнитни полета съставлява основата на новата и с огромно значение наука: магнито-хидродинамика или съкратено МХД. Днес ние използуваме най-различни магнитохидродинамически методи — както при научноизследователска работа, така и в промишлеността — за получаване и задържане на плазми при температури, достигащи милиони градуса. Аналогични процеси могат да се наблюдават на Слънцето, където магнитните полета около слънчевите петна и вулкани са толкова интензивни, че изхвърлят големи колкото Земята газови облаци на височина от хиляди километри, преодолявайки лесно слънчевата гравитация.
Черпене на енергия непосредствено от Слънцето може да звучи фантастично предложение, ала ние вече сме изследвали неговата атмосфера с помощта на радиолъчите. Може би ще дойде ден, когато ще се научим да освобождаваме титаническите сили, действуващи на Слънцето, и да избираме от неговото нажежено и разтопено вещество това, което ни трябва. Обаче преди да предприемем подобни прометееви подвизи, ще бъде добре да имаме ясна представа за възможните по-следствия.
Извършили, макар и мислено, проверка на Слънчевата система в търсене на сурови материали, нека се върнем отново на Земята и насочим вниманието си в съвършено друга посока. Възможно е ние никога да не трябва да напускаме пределите на нашата планета, за да търсим това, от което имаме нужда, защото ще дойде време, когато ще се научим да създаваме който и да било елемент, в каквото и да било количество с помощта на ядрени превръщания.
До откриване на разпадането на урановия атом през 1939 година превръщането на един елемент в друг си оставаше все същата мечта, както и по времето на някогашните алхимици. От деня, в който през 1942 година започнаха да работят първите реактори, е било произведено значително (измеримо в тонове) количество синтетичен елемент плутоний; освен това в огромни количества бяха добити и други, често пъти