принимали прямого участия в управлении операцией... А вот тем, кто был на связи с терпящим бедствие экипажем - разработчикам космической техники, ведущим специалистам,- пришлось пережить тревожные часы. До утра никто из них не сомкнул глаз: искали возможные причины аварии, выход из создавшегося положения. Было ясно, что произошли неполадки с основным двигателем, но в порядке ли резервный, дублирующий? Готовясь к самому худшему, проанализировали и варианты отказа обоих 'движков': как экипажу быть в этом случае, как без маршевых двигателей корабль вернуть на Землю? Рассмотрели даже такой, я бы сказал, фантастический вариант, как сближение корабля со станцией и далее торможение всего комплекса, сход с орбиты. К счастью, он не понадобился. Экипаж с честью, в высшей степени профессионально сумел сладить с редчайшим отказом.

Профессионализм в нашем деле - это не только способность не терять головы, не поддаваться панике в сложных ситуациях. Как правило, непредвиденные осложнения связаны с какими-то неполадками в технике, и чтобы знать, как реагировать на отказ, необходимо заранее проигрывать возможные ситуации на тренажерах. Ну, а если в реальном полете возникла непредвиденная ситуация, которую и предусмотреть-то никто не мог, значит, быстро, но не спеша все проанализируй, попробуй представить, чем вызван отказ и как его устранить. Отменное знание техники, множество тренировок в штатных и нештатных ситуациях, практический опыт полетов - вот что придает космонавту спокойствие, помогает сохранить трезвой голову даже в непредвиденных обстоятельствах.

...За всеми хлопотами чуть было не забыли об эксперименте 'Аудио', подготовленном специалистами из ГДР. Берци, молодчина, быстро оправился от встряски и, приговаривая: 'Нас не удалось напугать', почти уже выполнил необходимые замеры. Они несложные - надо определить, насколько изменяется чувствительность нашего слуха в невесомости и уровень шумов на станции.

- Берци, что у тебя получилось? Не оглох?

- Нет вроде. Вот результаты.

- Что же, в общем-то есть изменения, правда незначительные. Где ты уровень шумов измерял?

- Здесь наверху, на конусе аппаратуры...

Попробую и я, хотя и не очень-то верю, что в невесомости меняется острота слуха. Какие для этого могут быть причины? Да, так и есть - слышу нормально. Быстренько заканчиваю эксперимент. Чего не сделаешь ради науки...

Еще один медико-биологический эксперимент - 'Работоспособность', очень интересный и, на мой взгляд, объективно оценивающий реакцию испытуемого, его способность точно и быстро обрабатывать оперативную информацию. Тестирует тебя прибор 'Балатон', созданный по заказу советских специалистов венгерской промышленностью. 'Идеолог' эксперимента славный симпатичный венгр Янош Хидек был вместе с нами на космодроме и просил очень внимательно отнестись к предстоящему испытанию.

Внешне прибор напоминает портативную вычислительную машинку: на передней панели - окошко, в котором высвечивается цифровая или буквенная информация. Ты же должен реагировать на вводные данные и нажимать соответствующие кнопки. Программ множество - от простых до сложнейших. Есть и звуковой канал - через наушники прибор выдает сигналы, подобные азбуке Морзе. Звук как бы раздваивает внимание: следя за цифрами, ты должен еще и подсчитать, сколько слышал коротких и сколько длинных гудков.

Прибор суммирует, сколь успешно испытуемый справился со всем тестом, определяет реакцию и сообразительность в решении отдельных задач. В результате медики получают данные о способности космонавта обрабатывать информацию в разных условиях, скажем, в начале рабочего дня, в середине, в конце.

Интересная особенность прибора 'Балатон' - он оценивает и то, каких усилий стоит космонавту справиться с тестами. Сбоку - лунки для пальцев, куда встроены датчики кожно-гальванического сопротивления. Если пальцы потеют, сопротивление падает и прибор засекает: клиент напрягается, хотя и успевает реагировать на информацию. Улавливает он и учащение пульса и тут же, как бы в порядке обратной связи, подает в наушники высокий, почти визгливый сигнал. В этом случае оставляй сложные задачи, переходи на простенькие, успокаивайся. Привел себя в порядок, и это тут же замечает прибор: в наушниках по-прежнему спокойный, добродушный звук. Кстати, быстрота, с которой приходит в порядок пульс, тоже ценная информация для врача - по ней он может судить о степени возбуждения космонавта.

К сожалению, создатели прибора рассчитывали на тонкие, музыкальные пальцы: мои же просто- напросто не входили в лунки.

Забираюсь в дальний угол переходного отсека, здесь тихо, ничто не отвлекает внимание. А это очень важно в поединке с таким прибором. Так по первым результатам видно, что проделываю все в том же темпе, что и на Земле,- я ведь немало повозился с 'Балатоном' еще при подготовке к полету. Но окончательный вывод сделает Янош Хидек, и, если изменения все-таки есть, это тоже небезынтересно для науки.

У 'Балатона', на мой взгляд, большие перспективы не только в космонавтике. Он может сослужить добрую службу при обследовании пилотов, водителей всех видов транспорта, диспетчеров, операторов перед ответственной работой на пультах управления. А как удобен он для медсестер интенсивной терапии, которые сутками напролет следят за состоянием больного. Ведь за какой-нибудь десяток минут прибор позволяет исчерпывающе определить психомоторные параметры, работоспособность.

Как бы для разнообразия следующий эксперимент совершенно другого свойства. Он называется 'Деформация' и призван установить, насколько меняется 'геометрия' орбитального комплекса от неравномерного нагрева солнечными лучами станции и состыкованных с нею кораблей. Даже на Земле, где всегда есть конвективный теплообмен между солнечными и теневыми местами, вполне ощутима разница в их нагреве. В космосе же 'пустая' среда не проводит тепло, и солнечная сторона станции нагревается до плюс 100-120 градусов. Конструкторы предусмотрели столь тяжелый для материалов температурный режим и оснастили станцию экранно-вакуумной тепловой изоляцией. Как можно догадаться по названию защиты, экранирование ограждает корпус станции от нагрева лучами, а вакуум, отделяющий корпус от экрана, работает как теплоизолятор.

Тем не менее в полном соответствии с физическим законом о том, что при нагреве тела увеличиваются, а при охлаждении сжимаются, станция и корабли деформируются, изгибаются и даже скручиваются относительно продольной оси. Кроме того, нарушение идеальной, исходной формы комплекса сказывается и на точности измерений с помощью разных бортовых оптических приборов. А раз так, то вполне возможны погрешности в ориентации, при навигационных измерениях.

Но как заметить изнутри деформацию комплекса? Даже если выйти за его пределы, за что зацепиться в этом безопорном пространстве, чтобы из какого-то постоянного положения по отношению к станции измерить величину изгиба и скручивания? Нет, и выход в открытый космос никак не поможет эксперименту. Единственный ориентир, который в данном случае можно считать неподвижным,- Солнце. Его мы и фотографируем из разных точек комплекса, по-разному ориентируя 'Салют' и 'Союзы' по отношению к солнечным лучам. Контур светила фиксируется на оптическом приборе, снабженном специальной сеткой.

Заняв позиции в обоих 'Союзах' и в орбитальной станции, фотографируем Солнце через пять минут после конца ориентации, через час, через два. На Земле специалисты проанализируют, как изображение светила 'гуляет' по сеткам оптических приборов в разных концах комплекса, подсчитают величины изгиба и скручивания, дадут поправки, которые из-за деформации станции нужно учесть при ее ориентации.

Еще один очень важный оптический эксперимент проделали мы с 'Днепрами'. Первые экспедиции на станции 'Салют-6' установили: в зависимости от высоты над земным горизонтом Солнце представляется наблюдателю меняющейся формы от привычного круга до ярко выраженного овала. Сориентировав комплекс на светило, мы спроецировали его изображение на специальный экран. В начале эксперимента, который назывался 'Рефракция', на полотне высветился яркий круг диаметром около полуметра. Когда Солнце погрузилось в атмосферу и стало изменять свою видимую форму, мы фотографировали его изображение на экране.

Столь явные метаморфозы светила прекрасно характеризуют плотность и температуру воздуха на разных высотах. Успех эксперимента 'Рефракция' сулит большие удобства в оперативном и простом измерении этих важнейших параметров атмосферы. Ведь фотографировать из космоса можно сколь угодно

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату