несколько облегчает образование ядер. (Именно поэтому данный момент времени я обозначил неопределенно словами «чуть позже, чем пятый кадр».) В случае одного миллиарда фотонов на одну ядерную частицу нуклеосинтез начнется при температуре 900 миллионов градусов Кельвина (0,9 × 109К). С момента первого кадра прошло уже три минуты и сорок шесть секунд. (Читатель простит мне неточность в названии этой книги «Первые три минуты». Это просто лучше звучит, чем «Первые три и три четверти минуты».) Как раз перед началом нуклеосинтеза, нейтронный распад сдвинул нейтрон- протон-ный баланс до 13 процентов нейтронов и 87 процентов протонов. После нуклеосинтеза доля гелия по массе в точности равна доле всех ядерных частиц, связанных в гелии; половина из них — нейтроны, и практически все нейтроны связаны в ядре гелия, так что доля гелия по массе просто есть удвоенная доля нейтронов среди ядерных частиц, т. е. около 26 процентов. Если плотность ядерных частиц несколько выше, нуклеосинтез начнется немного раньше, когда еще распалось не так много нейтронов, поэтому образуется чуть больше гелия, но, вероятно, не более чем 28 процентов по массе (рис. 9).

Рис. 9. Сдвиг нейтрон-протонного баланса. Показана доля нейтронов по отношению ко всем ядерным частицам как функция температуры и времени. Часть кривой, помеченная надписью «тепловое равновесие», описывает период, в течение которого плотности и температуры были столь высоки, что среди всех частиц достигалось тепловое равновесие; доля нейтронов в этой области может быть вычислена по известной разности масс нейтрона и протона с помощью правил статистической механики. Часть кривой, помеченная надписью «распад нейтрона», описывает период, в течение которого все процессы взаимопревращений нейтронов и протонов исчезли, за исключением радиоактивного распада свободного нейтрона. Сплошная часть кривой зависит от детальных расчетов вероятностей процессов слабого взаимодействия. Пунктирная часть кривой показывает, что случилось бы, если бы ка-ким-то образом было предотвращено образование ядер. В действительности, в момент времени где-то внутри интервала, отмеченного стрелкой с надписью «эра нуклеосинтеза», нейтроны быстро объединились в ядра гелия и нейтрон-протонное отношение замерзло на том значении, которое оно в этот момент имело. Эту кривую можно также использовать для оценки доли (по массе) космологически образованного гелия: для любой данной температуры или данного времени нуклеосинтеза эта доля в точности равна удвоенной нейтронной фракции в этот момент

Мы теперь достигли и даже перешли запланированную точку по времени, но, чтобы лучше увидеть то, чего мы достигли, бросим последний взгляд на Вселенную после еще одного падения температуры.

Шестой кадр. Теперь температура Вселенной равна 300 миллионам градусов Кельвина (3 × 108 К). С момента первого кадра прошло 34 минуты и 40 секунд. Все электроны и позитроны теперь полностью проаннигилировали, за исключением маленького (одна часть на миллиард) избытка электронов, необходимого для компенсации заряда протонов. Выделившаяся при этой аннигиляции энергия дала фотонам температуру, которая теперь уж навсегда на 40,1 процента выше, чем у нейтрино (см. математическое дополнение 6). Плотность энергии Вселенной эквивалентна теперь плотности массы, составляющей 9,9 процента плотности воды; 31 процент находится в форме нейтрино и антинейтрино и 69 процентов — в форме фотонов. Такая плотность энергии дает характерное время расширения Вселенной, равное одному часу с четвертью. Ядерные процессы остановились — ядерные частицы большей частью либо связаны в ядра гелия, либо являются свободными протонами (ядрами водорода), причем доля гелия по массе — от 22 до 28 процентов. На каждый свободный или связанный протон имеется один электрон, но Вселенная все еще слишком горяча, чтобы могли удержаться стабильные атомы.

Вселенная будет продолжать расширяться и охлаждаться, но в течение 700 000 лет не произойдет ничего особенно интересного. К этому времени температура упадет до точки, когда электроны и ядра могут образовывать стабильные атомы; исчезновение свободных электронов сделает содержимое Вселенной прозрачным для излучения; разъединение вещества и излучения позволит веществу начать формироваться в галактики и звезды. Пройдет еще примерно 10 миллиардов лет, и живые существа начнут реконструировать эту историю.

Этот расчет ранней Вселенной имеет одно следствие, которое немедленно можно сопоставить с наблюдениями: оставшийся после первых трех минут материал, из которого должны были первоначально образоваться звезды, состоял на 22–28 процентов из гелия, а остальное почти все было водородом. Как мы видели, этот результат зависит от предположения, что имеется огромное отношение числа фотонов к числу ядерных частиц, что, в свою очередь, основано на измеренной температуре теперешнего фона космического микроволнового излучения, равной З К. Первый расчет космологического образования гелия, использовавший измеренную температуру излучения, был сделан П.Дж. Е. Пиблзом в Принстоне в 1965 году, вскоре после открытия Пензиасом и Вилсоном микроволнового фона. Похожий результат был независимо получен почти в то же самое время в более искусном вычислении Роберта Вагонера, Уильяма Фаулера и Фреда Хойла. Этот результат был ошеломляющим успехом стандартной модели, так как в это время уже имелись независимые оценки, что Солнце и другие звезды начали свою жизнь, состоя большей частью из водорода и лишь на 20–30 процентов из гелия!

Конечно, на Земле очень мало гелия, но это только потому, что атомы гелия так легки и так химически инертны, что большинство их покинуло Землю многие века тому назад. Оценки изначальной распространенности гелия во Вселенной основаны на сравнении детальных расчетов звездной эволюции со статистическим анализом наблюдаемых свойств звезд, а также с прямыми наблюдениями линий гелия в спектрах горячих звезд и межзвездного материала. В самом деле, как указывает само название, гелий был идентифицирован впервые как элемент при исследовании спектра солнечной атмосферы Дж. Норманом Локайром в 1868 году.

В начале 60-х годов несколькими астрономами было отмечено, что распространенность гелия в Галактике не только велика, но и не меняется от места к месту так же сильно, как меняется распространенность более тяжелых элементов. Это, конечно, как раз то, что и нужно было ожидать, если тяжелые элементы образовывались в звездах, а гелий образовался в ранней Вселенной прежде, чем начала приготовляться любая звезда. Имеется все еще довольно много неопределенностей и колебаний в оценках распространенности ядер, но свидетельство в пользу изначальной 20-30-процентной распространенности гелия достаточно сильно для того, чтобы весьма воодушевить приверженцев стандартной модели.

Вдобавок к большому количеству гелия, образованного в конце первых трех минут, имелись также следы более легких ядер, особенно дейтерия (ядро водорода плюс один лишний нейтрон) и легкого изотопа гелия 3Не, избежавших объединения в ядра обычного гелия. (Их распространенность была впервые вычислена в 1967 году Вагонером, Фаулером и Хойлом.) В противоположность распространенности гелия, распространенность дейтерия очень чувствительна к плотности ядерных частиц в момент нуклеосинтеза: при высоких плотностях ядерные реакции происходят быстрее, так что почти весь дейтерий должен уйти в состав гелия. Для определенности приведем значения распространенности дейтерия (по массе)[45], образованного в ранней Вселенной, полученные Вагонером для трех возможных значений отношения числа фотонов к числу ядерных частиц:

Ясно, что если бы мы могли определить изначальную распространенность дейтерия, существовавшую перед тем, как начали приготовляться звезды, то мы могли бы точно определить отношение числа фотонов к числу ядерных частиц; зная нынешнюю температуру излучения, равную З К, мы смогли бы затем найти точное значение плотности массы ядер во Вселенной в настоящий момент и судить о том, открыта она или закрыта.

К сожалению, очень трудно определить истинную первичную распространенность дейтерия. Классическое значение для распространенности по массе дейтерия в воде на Земле — 150 частей на миллион. (Именно дейтерий будет использоваться в качестве топлива термоядерных реакторов, если когда- нибудь удастся должным образом управлять термоядерными реакциями.) Однако это искаженная временем цифра; тот факт, что атомы дейтерия вдвое тяжелее атомов водорода, дает им возможность несколько более охотно связываться в молекулы тяжелой воды (HDO), так что из поля притяжения Земли должна была

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату