расстоянии 50 километров от немецких батарей ничего не было слышно…
Я уже не буду больше разжигать ваше любопытство: физики установили, что высоко над землей на расстоянии 40–80 километров, в стратосфере звуковые волны отражаются и отправляются обратно на поверхность земли. Таким образом, звук переносится на расстоянии до 300 километров от своего источника.
Между источником звука и полосой слышимости, возникающей благодаря отражению радиоволн в стратосфере, может быть и «полоса тишины», такая большая, что в ней спокойно разместится целая армия с маршалом во главе…
Вскоре после того, как через Атлантический океан впервые были переданы радиосигналы, физики установили, что в стратосфере существует какое-то подобие зеркала, отражающего радиоволны обратно на Землю. (Это связано с повышением температуры молекул в разряженных слоях атмосферы). Иначе было трудно объяснить, почему радиоволны не ведут себя так, как должны были бы вести согласно утверждениям профессора Томсона. Почему они не уходят с поверхности земного шара в космос? Почему происходит хорошо знакомое вам замирание или прекращение радиоприема на коротких волнах? Специалисты называют это явление «федингом».
В начале XIX века английский физик Дальтон, объясняя полярное сияние, впервые предположил, что существуют
Через несколько лет физик Эпплтон обнаружил над слоем Кеннели-Хэвисайда на высоте 300 километров еще один слой, отражающий даже те короткие волны, которые проходили сквозь первое «зеркало». Оба слоя были позднее названы
Фединг!
Ругайтесь, но только погромче! Ведь «виновник» этого явления удален от вас самое меньшее на сто километров!
«Говорящие» зеркала
Вы, наверное, обращали на них внимание. Они растут в последнее время, как грибы после дождя: «зеркала» с искривленной, параболической поверхностью, расположенные на высоких холмах, на железобетонных башнях, похожих на видовые вышки или маяки. Вы уже поняли, конечно, о чем идет речь! В этом вопросе с самого начала нужна ясность. Дело в том, что если бы вы задали вопрос, для чего служат упомянутые тарельчатые зеркала пяти техникам, то, возможно, получили бы от них пять разных ответов:
— Зеркала? Да ведь это аппараты направленной связи! — сказал бы один.
— Параболоиды ультракоротковолновой связи! — заявил бы второй, — любитель длинных и сложных иностранных выражений.
— Связь Герца, — объяснил бы деловито третий.
Четвертый сказал бы, что это аппараты ретрансляционной связи.
Пятый, не согласившись ни с одним из предшественников, стал бы утверждать, что это средства радиорелейной связи.
Во всех случаях имелось бы в виду одно и то же устройство. Откуда же такое необычное для науки и техники разнообразие названий? Все имеет свои принципы. Бурная история радиорелейной связи — будем ее впредь называть именно так — столь коротка, что до унификации названий просто «не дошли руки». Началась это история с не совсем удачного эпизода, происшедшего в 1931 году в Ла-Манше, как раз в тех местах, где когда-то поднимался в воздух и приземлялся прославленный летчик Блерио, а почти на 150 лет раньше совершил свои полеты на воздушном шаре искатель приключений Бланшар. В 1931 году состоялись первые опыты по установлению связи между английским городом Дувром и Кале, расположенном на французском берегу, при помощи чрезвычайно коротких волн, длиною всего в 18 сантиметров (до этого для связи использовались волны, измерявшиеся метрами, десятками и даже сотнями метров!).
Опыты были вскоре приостановлены. Прием отличался низким качеством, слышимость была плохой, ее ухудшали многочисленные помехи. А ведь оба города находились достаточно близко. Но тем не менее опыты эти привлекли внимание военных специалистов. Они рассуждали вполне логично: главным оружием в войне, которая нависла над Европой, будут самолеты. Англии, уверенной прежде в своей полной безопасности, несмотря на ее островное положение, несмотря на наличие мощного военного флота, охранявшего берега, угрожала опасность с воздуха, — оттуда мог каждую минуту посыпаться град бомб. Ведь нечто подобное жителям Лондона довелось уже испытать в первую мировую войну, когда над городом появились сигарообразные тела огромных немецких «цеппелинов».
Прежде всего нужно было вовремя узнать о приближении вражеских самолетов. Слово «вовремя» означало в данном случае «время, необходимое для того, чтобы истребители английской авиации могли подняться со своих аэродромов навстречу врагу, а артиллеристы зенитных батарей подготовиться к отражению воздушной атаки».
Морякам было в этом отношении проще. Они довольно быстро разработали способ обнаружения приближающихся неприятельских подводных лодок. Были созданы звукоулавливатели, регистрировавшие шум винтов подводной лодки, и эхолоты, замечавшие даже звук, отраженный от корпуса подводной лодки, притаившейся под водой с выключенными моторами. А там, где откажут звуковые приборы, поможет АСДИК, — прибор, использующий неслышимые простым ухом ультразвуки высокой частоты, которые проникают на гораздо большую глубину и на большее расстояние, чем обычные звуки.
Противовоздушная оборона также пыталась использовать огромные звукоуловители. Но самолеты противника поднимались на такую высоту, что звук их моторов почти не достигал земли. Не оставалось ничего другого, как сдать неуклюжие звукоуловители в утиль. Вот если бы создать нечто вроде АСДИКа против самолетов. Но, постойте! А что, если для этого использовать ультракороткие волны, которые как раз открыли радиотехники. Ведь они жаловались именно на то, что эти волны чутко реагируют на все окружающие предметы, что для четкой передачи сообщения нужно очень точно настроить антенны приемных и передаточных аппаратов.
В 1934 году в Боусдее были созданы специальные лаборатории по изучению возможности использования ультракоротких волн для противовоздушной обороны. На протяжении сравнительно короткого времени ученым удалось создать РАДАР. Это сокращенное обозначение — «Radio Detection And Ranging», то есть прибора для радиопеленгации и измерения.
Принцип действия радара не сложен. Искривленная параболическая антенна направляет в пространство узкий пучок ультракоротких радиоволн. Натолкнувшись на препятствие, например, на самолет, волны возвращаются обратно и улавливаются специальным приемником, на экране которого появляется силуэт обнаруженного предмета. По его форме обслуживающий персонал радиолокатора