1976). Флатландец Эбботта, попав во сне в Лайнландию, тщетно пытается убедить тамошних обитателей в существовании плоскости.

По ходу действия одному из флатландцев удается познать трехмерное пространство, за что его признают «безумнейшим из безумных».

Через двадцать с лишним лет, в 1907 г., Ч. Г. Хинтон опубликовал роман «Случай во Флатландии». В нем два флатландских народца ведут войну. Поскольку все флатландцы обращены лицом в одну сторону, один из народцев всегда в безнадежном проигрыше: он не может повернуться и нанести ответный удар в нужном направлении - ненавистный враг постоянно сидит у него на шее. Но в конце концов добро побеждает. Какая-то умная голова замечает, что Флатландия расположена на шарике и, значит, можно, обежав вокруг него, зайти врагу в тыл.

Автор романа строит свой рассказ в молчаливом предположении, что флатландцы могут двигаться только по определенным генеральным направлениям, исключающим обход сбоку, а опрокинуть врага через голову для них невозможно.

Как видно, по поводу жизни в двумерном пространстве выдвигались самые изощренные теории, однако они никогда не находили приложения. Надо думать, и эти книги, и их авторы были бы давно позабыты, если бы Лайнландия и Флатландия не были так нужны для пояснения теории зеркального отражения и если бы составителям задач на сообразительность не приходилось все снова и снова обращаться к Флатландии, чтобы извлекать идеи из ее двумерия (кстати, не так давно в Венгрии был создан мультфильм о путешествии школьника Адоляра во Флатландию).

В числе прочего флатландцы перевозят грузы, накатывая платформы на круги. Всякий раз, когда груз минует круг, тамошний транспортный служащий перекатывает этот круг вперед и ставит перед платформой.

Здесь возникает множество любопытных задач. Но нас интересует только одна: если ось колеса движется со скоростью 10 м в минуту, с какой скоростью движется груз?

О нашем земном автомобиле мы знаем, что ни одно колесо (точнее, ни одна колесная ось) не может двигаться скорее, чем весь автомобиль. Но у флатландского автомобился колесо не связано жестко с грузом. Подумав, нетрудно сообразить, что груз здесь участвует в двух движениях.

Сумма углов треугольника, расположенного на шаровой поверхности, может превышать 180°

Во-первых, он движется вместе с осью вращения колеса (это так же, как и у автомобиля). А кроме того, груз еще катится по окружности колеса, и при этом со скоростью, тоже равной скорости вращения оси. Следовательно, в целом груз катится с двойной скоростью по отношению к скорости колеса. Разумеется, груз должен двигаться скорее уже потому, что колеса все время остаются позади и их приходится постоянно переставлять вперед.

Некоторые читатели подумают: «Задачка действительно занятная, ну и что из того?»

Однако принцип действия флатландского транспорта находит себе место и в нашей технике. Так, конструктор, проектируя дверь в небольшом помещении (например, у маленького лифта), вынужден отказаться от шарниров. Он делит дверь на две половинки (если, конечно, додумается до такой уловки!), которые ходят параллельно друг перед другом. Одна половинка двери неподвижно скреплена с осью ролика, а вторая двигается по окружности этого ролика. Пока одна половинка сдвигается на половинку ширины двери, другая успевает перебежать всю ширину дверного проема (с удвоенной скоростью).

Не станем смотреть на Флатландию и на писательские фантазии свысока. Предположим, что флатландцы действительно проживают на поверхности шара. Поверхность эта столь велика, что жители могут не заметить ее кривизны. Естественно, они думают, что живут на плоскости, так как шара представить себе не могут: ведь третье измерение им в принципе незнакомо. Поэтому профессора-флатландцы развивают флатландскую математику, которая изучается в школах. Дети там зазубривают, например, такое определение: две параллельные прямые пересекаются на конечном расстоянии. Или: сумма углов треугольника превышает 180°. Мы же, люди трехмерного пространства, знаем, что шаровая поверхность представляет собой двумерное неевклидово пространство, которое не укладывается в привычную евклидову геометрию.

Посмотрев на глобус, мы видим, что два меридиана, параллельные у экватора, на полюсе пересекаются. Глядя на глобус, можно убедиться и в том, что два меридиана образуют с экватором угол 90°. У точки пересечения на полюсе возникает еще один угол. И сумма всех трех углов в любом случае больше 180°. Но бедные флатландцы, конечно, не могут и предположить всего этого. Они-то уверены, что живут на плоскости.

Один скептически настроенный математик, Карл Фридрих Гаусс (1777-1855), всерьез задумался над тем, не в положении ли флатландцев находимся и мы, люди. Возможно, думал Гаусс, мы тоже живем в неевклидовом мире, но только не замечаем этого. Если бы это было так, пространство было бы искривлено (чего бы мы, конечно, не могли себе представить), и у достаточно большого треугольника сумма углов отличалась бы от 180°. Гаусс измерил треугольник между Брокеном, Инзельбергом и Высоким Хагеном, но не нашел существенного отклонения от 180°. Это, конечно, не могло служить бесспорным доказательством, так как треугольник все равно мог оказаться слишком мал.

Впрочем, нельзя просто так сравнивать неевклидово пространство, о котором шла речь, с пространством в теории относительности. Мы с вами, флатландцы и Гаусс ведем речь о чисто геометрической, пространственной проблеме и о том, справедливы ли определенные аксиомы (к примеру, о пересечении двух параллельных прямых в бесконечности). Приверженцы теории относительности в качестве четвертой пространственной координаты вводят время.

О КОНГРУЭНТНОСТИ

Две плоские фигуры конгуэнтны, если у них все углы и отрезки прямых между соответствующими точками равны.

В школе мы изучаем теоремы о конгуэнтно-сти треугольников. Установлено, например, что площади треугольников равны, если у них одна сторона и прилежащие к ней два угла совпадают. Это означает, что, хотя для построения треугольников можно использовать сторону и два прилежащих к ней угла, совпадать треугольники должны всеми своими частями.

В разговорной речи (которой мы и пользуемся в этой книге) можно сказать, что конгруэнтные плоскости точно накладываются друг на друга или, наоборот, если одна плоская фигура точно наложима на другую, то они конгруэнтны. То же самое справедливо и для трехмерных тел: если их можно совместить, то они конгруэнтны.

Три изображенных здесь черных треугольника конгруэнтны. Оба левых треугольника можно совместить непосредственно. Правый же треугольник нельзя совместить с левым ни путем простого смещения, ни путем поворота в плоскости листа. Его надо для этого повернуть в пространстве

Посмотрите на треугольники, изображенные на рисунке. Все они конгруэнтны. Очевидно, что оба треугольника, помещенные слева, совместятся, если их попросту передвинуть. А вот треугольник, помещенный справа, хотя и конгруэнтен с двумя левыми, но совместить его с ними только передвижением в плоскости мы не сможем. Как бы мы ни вертели его в плоскости, он никогда не совместится ни с одним из левых треугольников. Чтобы достичь этого, нужно приподнять треугольник над плоскостью, повернуть его в пространстве и снова положить на плоскость. Но если мы сравним взаимное расположение треугольников, совмещенных путем сдвига и перевертывания, то увидим, что в обоих случаях совпадают их разные стороны. При сдвиге нижняя поверхность одного бумажного треугольника накладывается на верхнюю поверхность второго треугольника. Пространственная ориентировка поверхности бумажного листа не изменилась. В этом случае говорят о тождественной конгруэнтности. Если при повороте в пространстве совмещаются обе верхние поверхности бумаги, плоские фигуры называются зеркально- конгруэнтными.

Конгруэнтными называются плоские фигуры, которые мы воспринимаем как равные и которые можно совместить друг с другом путем сдвига в плоскости или поворота в пространстве.

Вы читаете Зеркальный мир
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату