толкнет соседний, тот, пройдя зазор — следующий и т. д. Заметьте, что «фронт» процесса (граница области, где находятся карандаши без зазоров между ними) всегда опережает любой из двигающихся карандашей. Чем больше сжатие вещества (больше расстояние между карандашами), тем меньше различаются «массовая» скорость карандашей и скорость фронта, но отличие существует всегда.

Ясно, что чем плотнее «упаковано» атомами вещество, тем сильнее оно «сопротивляется» сжатию. Например, такая в высшей степени упорядоченная структура, как монокристалл, сжимается УВ с давлением в миллион атмосфер всего вдвое. Повышение же температуры в мощной ударной волне приводит к тому, что молекулы вещества за фронтом волны сначала диссоциируют, а потом — ионизуются и составлявшие их атомы. Это означает, что вещество, в исходном состоянии бывшее диэлектриком, может, будучи ударно- сжатым, превратиться в проводник[57].

Рис. 4.25. Процесс развития нестабильностей в лайнере ИВМГ. Со временем (интервал между снимками 1,6 мкс) внутренняя поверхность лайнера из цилиндрической становится звездообразной

Вернемся к аналогии с карандашами и сделаем промежутки между ними совсем незаметными. Тогда, стоит чуть-чуть тронуть их ряд — и фронт «процесса» окажется очень далеко, а «движения вещества» практически не будет. Если сжимаемость мала, а ионизация все же происходит, то магнитное поле сразу оказывается в проводящем веществе, которое «не успеет» сколь-нибудь заметно вытеснить поле в область сжатия — произойдет «вмораживание». Предельный случай вмораживания — ионизация вещества мощным излучением, когда среда может вообще не двигаться. Не сможет двигаться и поле, оказавшееся в такой среде после ионизации. Представим эту ситуацию, расположив между карандашами обрезки веревки — они будут моделировать силовые линии поля. Сдвинувшись, карандаши зажмут веревки между собой и двигаться дальше им можно будет только вместе. Потери на вмораживание специфичны именно для ударного сжатия, они «откусывают» поле по краям области сжатия, в то время как при сжатии поля проводником последний «толкает перед собой» поле, за исключением того, что диффундирует внутрь него.

Подытожим причины, по которым применение ударной волны целесообразно для очень быстрого и очень «глубокого» сжатия магнитного поля.

— По обе стороны фронта ударной волны разница плотностей мала: даже мощные ударные волны с давлением в миллион атмосфер сжимают твердые тела лишь вдвое, а дальнейшее повышение давления сопровождается не сжатием, а ростом температуры. Малая разность плотностей означает, что при ударно- волновом сжатии не развиваются нестабильности.

— Если нагрев при ударном сжатии значителен, возможны ионизация и скачок проводимости: перед фронтом вещество является изолятором, в котором магнитное поле распространяется со световой скоростью, а за фронтом — проводником, в котором скорость распространения поля на много порядков ниже. Такой волной, образующей замкнутое кольцо, сходящееся к центру, может сжиматься магнитное поле — как лайнером, но без нестабильностей.

Как вмораживание, так и диффузия приводят к потерям магнитного ноля: оно «захватывается» проводящим веществом и уже далеко не полностью концентрируется в области сжатия. Становится возможным «сбрасывать» излишнее поле за фронт ударной волны, препятствуя тем самым чересчур быстрому усилению магнитного давления. Подбирая характеристики вещества (степень сжатия и проводимость в ударно-сжатом состоянии) можно регулировать «сброс» поля, согласуя тем самым закон возрастания давления поля в области сжатия с гидродинамическим давлением в ударной волне, устраняя препятствие для сжатия до сколь угодно малого радиуса. Будем, однако, помнить, что работа против сил магнитного поля (а значит, и повышение энергии поля) совершается только за счет кинетической энергии вещества. Поэтому, выбор вещества, в котором будет сжиматься поле, должен представлять компромисс: если ударное сжатие будет слишком мало (очень малы промежутки между карандашами), то все магнитное поле будет вморожено, существенного движения массы вещества не будет, а значит, не будет и заметного усиления поля в области сжатия. Если же сжатие будет слишком велико, случится то, что случается в ИВМГ: магнитное давление остановит компрессию поля, потому что быстро станет «сильнее» гидродинамического давления.

…Непрост в экспериментальной физике переход от научной болтовни к практическим решениям. Вы знаете, что «стрелять» до бесконечности вам не позволят: и время и финансирование ограничены всегда. Не верьте лжи, что перед опытом все было рассчитано: для устройства созданного впервые слишком многие параметры, необходимые для расчетов, сомнительны. Поэтому, после арифметических вычислений (в крайнем случае — после решения простейшего дифференциальною уравнения) от вас требуется твердо произнести что-либо вроде: «Рабочее тело в источнике излучения будем делать из монокристалла иодида цезия!». Основания для такого решения были следующими.

— Если конечный размер области сжатия — около десятка микрон, то фронт ударной волны должен быть очень гладким: с неровностями, размеры которых меньше размеров этой области. Вспомнилась статья об оптических исследованиях ударных волн в монокристаллах: С. Кормер утверждал, что фронт там «гладок, как зеркало», размер неровностей не превышает микрона. В любом случае, монокристалл — наиболее упорядоченная структура вещества — «последняя линия обороны»: если не выйдет в монокристалле, то не выйдет нигде!

— Этот монокристалл должен включать атомы с самым низким потенциалом ионизации, чтобы скачок проводимости в ударной волне был существенным. Значит — цезий.

— Этот монокристалл должен существовать в осязаемых размерах, не стоить бешеных денег не быть ядовитым, и желательно, чтобы хотя бы некоторые его свойства были исследованы ранее.

Я знал о таком монокристалле — йодиде цезия — еще со времен работы в НИИАА!

Изготовить в НИИ ВТ новые устройства (цилиндрические ударно-волновые излучатели, ЦУВИ, рис. 4.26) не заняло мною времени: цилиндрик монокристалла 1 в них был окружен кольцевым зарядом 2, детонация в котором инициировалась стаканом 3 из эластичного ВВ, через который проходили провода, соединявшие с источником питания пару медных витков 4, а в донной части — располагался детонатор.

2 марта 1983 года атмосфера на испытательной площадке была благодушная: два первых опыта (МГД генератор + объемно-детопируюшая система) продемонстрировали ожидавшийся результат начальникам кафедр академии. Приступили к испытаниям моих сборок. Первая по каким-то причинам сработала неважно, но готовить взрывной опыт и не предусмотреть необходимость его повторения — непростительная глупость! При взрыве второй сборки лучи осциллографов рванулись вверх, «выскочив» за пределы экранов. Офицеры Академии сообщили, что вышли из строя смесительные диоды в антеннах, стоявших в пяти метрах от взрыва. Мощность излучения по крайней мере в сто раз превысила ту, которую регистрировали в опытах с объемной детонацией! Этот опыт поставил других участников испытаний в затруднительное положение: их начальники увидели устройство размерами в десятки раз меньшее, чем объемно-детонирующис макеты, но излучавшее РЧЭМИ на два порядка большей мощности. Когда шок миновал, начались маневры, которым не приходилось слишком удивляться: от меня стали требовать описания ЦУВИ, убеждая, что оно «необходимо для отчета». Яснее ясною, что в отчете я был бы лишь одним из авторов. Рисковать уступить такую находку, как ЦУВИ, было неразумно: не так уж часто они выпадают в жизни исследователя. Уклончивость попытались преодолеть шантажом: Горбачий заявил, что диоды из строя не выходили, сигналы на осциллографах были наводками, потому как «электрончиков, электрончиков в твоем устройстве не видать», а, если не будет отчета, то и в дальнейших испытаниях офицеры академии участвовать не намерены. Саркастически «согласившись» с противоречивыми доводами, пришлось заметить, что, раз все это было наводками, то, действительно, нет смысла тратить время на опыты, а тем более — на написание отчета.

Рис. 4.26. Внешний вид сборки Е-7 — цилиндрического ударно-волнового излучателя (ЦУВИ) и ее схема

Если бы меня спросили, от кого я узнал об идее выведения из строя электроники противника при воздействии на нее мощным РЧЭМИ, я затруднился бы ответить и сейчас. Эта идея носилась в воздухе, очень многим было известно: для того, чтобы вышел из строя смесительный диод в радиолокаторе, достаточно индуцировать токовый импульс энергией всего в десятимиллионную долю джоуля[58].

Вы читаете Шелест гранаты
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

2

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату