динамике сжатия поля.
Вспомнив о приглашении В. Фортова, я встретился с академиком еще раз. Тот обрадовал: на полигоне в Черноголовке имеется батарея, энергию в которой можно довести до 10 МДж.
Сессия началась 6 мая 1986 года. В Черноголовке работали приветливые и компетентные сотрудники, в том числе В. Минцев, в будущем — заместитель директора этого института. РЧЭМИ регистрировали телевизионными антеннами и обрезками волноводов, в которые были включены высокочастотные смесительные диоды; сигналы с них осциллографировались. Сразу проявилось явление, которое и впоследствии испортило немало нервов: сигналы, хотя и были мощными (до нескольких вольт), но это были не отдельные импульсы, а так называемый «звон» (рис. 5.6), причину которого многие усматривали в наводках от больших токов, формируемых при включении батареи. Много позже специалисты объяснили, что при перегрузках диоды в волноводах теряли свои свойства и «звон» был вызван многократными отражениями волн в кабелях. Любопытно, что если первая полуволна сигнала значительно превышала последующие, то ее «излучательное» происхождение скептики, как правило, не отрицали. Опыты начались при зарядке батареи до небольших энергий — порядка 100 кДж — и успех сразу наметился: «горели» (уменьшали сопротивления более чем на порядок) диоды в антеннах, расположенных в 20–30 метрах от точки подрыва сборки.
На волне радостных эмоций, энергию зарядки батареи значительно увеличили — и результаты как обрезало. Основным предположением было: за время нарастания тока, катушки в сборке успевают разорвать пондерромоторные силы. Катушки стали делать проводом чуть не в палец толщиной, прибегали к другим ухищрениям, но все — напрасно: мощность РЧЭМИ оставалась ничтожной. Позже оказалось, что даже и при начальном уровне энергии в 100 кДж изоляция проводов быстро передавливалась и в закороченных катушках оставалась только небольшая часть (проценты) энергии токового импульса — как раз такая, которая и была нужна для эффективного излучения. Все меры, направленные на то, чтобы «затолкать» в излучатель больше энергии, приводили к «перекармливанию»: по мере сжатия, слишком «сильное» поле останавливало ударную волну, когда генерация излучения еще практически не начиналась. Мысли о «перекармливании» были правильными, но совершенно неверными — представления об оптимальном уровне энергии магнитного поля в излучателе: величина 100 кДж уже была завышена на два порядка по сравнению с тем, что действительно требовалось!
Приближался визит делегации УРАВ ВМФ. Риск при демонстрации следовало свести к минимуму, стали готовить те же сборки, с которыми начинали опыты. Делегация привезла партию радиолокационных взрывателей, которые разместили на деревянных ящиках, различным образом ориентировав (рис. 5.7) и имитировав обрезками проводов корпус снаряда (который являлся частью антенны взрывателя).
Теперь эти демонстрационные опыты можно оценить и как неимоверно удачные и как неудачные одновременно. Удачные — потому, что катушки в сборке были опять «передавлены» именно в тот момент, когда в них было «нужное» поле (а ведь это — случайность!). Неудачные — потому что «правильные» импульсы на осциллографах и положительные результаты укрепили во мнении, что 100 кДж — уровень начальной энергии, близкий к оптимальному для излучения РЧЭМИ.
Под копирку была нарисована схема расположения взрывателей (с указанием их заводских номеров), я подписал эту схему сам, а на своей копии получил автографы делегации моряков, которая увезла с собой опечатанный ящик со взрывателями. Через пару дней сказался «первый постоянно действующий фактор»: разработчики расспрашивали об условиях опытов, но давали довольно противоречивые ответы об эффектах: один собеседник говорил, что «все взрыватели вышли из стоя», другой — что «практически все работоспособны». Пришлось попросить разобраться офицеров штаба ВМФ и оттуда шифротелеграммой было приказано проводить проверку взрывателей только тех заводских номеров, которые были перечислены в схеме и только с участием представителя военной приемки. В соответствии с протоколом, большинство взрывателей вышло из строя, включая и те, которые находились в полусотне метрах от точки подрыва сборки.
5.5. К острову — на малом десантном корабле
17 июня 1986 года, с аппарели[67] десантного корабля, мы сошли на остров Коневец в Ладожском озере. Нас ожидала подготовленная к испытаниям крылатая противокорабельная ракета П-15[68] (рис. 5.8).
П-15 разрабатывалась в конце 50-х и в системе ее наведения преобладали схемы на лампах. Имелось, правда, четыре полупроводниковых диода: два — в смесителе и два — в канале автоподстройки частоты. Будучи мишенью для излучателей РЧЭМИ, П-15 и сама нуждалась в цели, которую соорудили, подняв над шлюпкой «железный парус» (рис. 5.9). На дистанции 120 м отраженный сигнал был очень мощным («больше, чем от крейсера» — говорил офицер, обслуживавший ракету).
Доставить на остров удалось лишь с пяток конденсаторов, поэтому «перекормить» излучатель было просто невозможно.
…Радиолокационная головка самонаведения жадно захватывала «железный парус». После подрыва сборки в 50 метрах от ракеты, стрелка прибора «ток смесителя» заметно дернулась, но на осциллографе контрольного стенда осталась «картинка», соответствующая удержанию цели головкой самонаведения. Это было невероятно: надо только представить, насколько мощным должно быть ударное возбуждение от наносекундного импульса РЧЭМИ, чтобы стрелочный прибор среагировал на него двукратным отклонением от номинального уровня! И, тем не менее — ракета цель не потеряла! Пара следующих дней принесла аналогичные результаты: хотя сборки подрывали все ближе к ракете, потери захвата цели не фиксировалось.
Пошли дожди, опыты были прервали и стали обследовать «пятнадцатую». Выяснилось, что все ее диоды имеют одинаковые сопротивления, как для «прямого», так и для «обратного» тока. После долгих препирательств, их стали поочередно заменять резисторами с сопротивлениями в сотни Ом. Можно было заменить на резисторы все диоды в канале автоподстройки частоты и один в смесителе (три из четырех имевшихся во всей схеме) и все равно захват «железного паруса» не срывался: на дистанции в сотню метров мощность отраженного от него сигнала превышала все разумные пределы!
…Следующий солнечный день был ветреным, Ладога покрылась пенными «барашками». В ракете заменили все диоды на новые, сборку расположили в 20 метрах под углом примерно 30 градусов к оси головки самонаведения и стали ждать. Наконец, кто-то заорал: «Баржа!» Начали лихорадочно заряжать батарею, приводить в рабочее состояние ракету. «Захват» баржи произошел на дистанции около трех морских миль и сборку подорвали. «Захват» был немедленно потерян. Тот же результат получили и когда ракета «смотрела вслед» уже уходящей барже, а сборку (последнюю из имевшихся) подорвали в 30 метрах