The KGB had a large presence at the institute, supervising documents, watching management, keeping an eye out for spies. Each employee went through a meticulous background check. Links to the outside world were forbidden, and contacts with foreigners rare. “And there was great, great suspicion regarding somebody who came from abroad,” Popov recalled. “The KGB instructed us how to deal with the visitor, the KGB assigned a special person to follow every step of that visitor, and everybody who contacted that visitor fell under the KGB’s suspicion, so it was a lot of trouble to even talk to the foreigner.” Some scientific articles from overseas journals were distributed, but general Western literature was prohibited. Suspicion was rife. Once, the scientific secretary of the institute was accused of reading literature about yoga, Popov recalled. “And also he had been noticed standing on his head. Head down, and legs up, and that was clearly unacceptable for a person in his position. Although he did it purely at his leisure at home, his abnormal behavior raised the suspicion that if he was capable of doing something like this, he could not be trusted. He was dismissed.”

The true purpose of Koltsovo was concealed with a “legend,” or cover story. “The so-called open legend provided to everybody was that the purpose of the institute was to push the development of industrial microbiology. And we wanted to know how to modify microbes, how to make them producers of different kinds of biological substances. It was a legitimate goal, which covered up the biological weapons program, because its purpose sounded exactly like the peaceful program. There was only one exception—those modified microbes had, ultimately, to be killers.”

Amid all the secrecy, Popov recognized a fault in the cover story. A normal institute of this size would be a source of dozens or hundreds of scientific papers in the professional journals. But Popov said scientists were severely restricted in what they could publish. Any paper had to say nothing about their real work, and fit the cover story. “It had to be a confusing, or misleading, or irrelevant story,” he said. The dearth of serious papers from a facility with thousands of research workers would be suspicious. If not making discoveries for science, what were they doing? But Popov was told by high-level officials that the United States had a hidden biological weapons program too, and he believed it. There was hardly any discussion of the 1972 treaty. “You know, the overall perception was that we were quite undeveloped, which was mainly true,” Popov said, reflecting on his thinking in those times. “We thought about ourselves as a country that needed to develop its own capability in terms of biological weapons. We feared being without them, and nobody essentially ever doubted that the Americans had the best biological weapons. And think about the predominant social mentality of the Soviets at that time. Who ever doubted that Americans were always cheating on us? Nobody did, simply because we always did—and expected others would be stupid not to behave in the same way.”

Viruses are extraordinarily small, submicroscopic particles, hundreds of times smaller than a grain of sand, that infect a biological organism and cause disease. They were first discovered by Dmitri Ivanovsky, a Russian microbiologist, in 1892, and six years later by Martinus Beijerinck, a Dutch microbiologist and botanist. Ivanovsky was trying to understand why tobacco mosaic disease, in the sap of tobacco plants, could not be captured by a porcelain filter that trapped bacteria. He realized that the disease particle was so small that it was passing through the filter. Viruses are barely life-forms, consisting of nothing more than a protein shell and bits of genetic material and sometimes a membrane. But they can be destroyers, carrying incredibly high virulence and contagiousness. They have caused smallpox and influenza epidemics. They work by infecting a host cell, then directing the cell to replicate and produce more viruses. Unlike bacteria, they cannot be treated with antibiotics.

Sandakhchiev’s dream was to build viral demons the world had never known—viruses that would attack troops or populations. But there were formidable hurdles to be overcome in this still-backward realm of Soviet science. The researchers had to learn to walk before they could run, and one of the early challenges was to synthesize genetic material, to make artificial DNA. At the time, methods were known in the West for creating simple genes, but the Soviet Union was still far behind. In the first six months of 1980, Sandakhchiev sent Popov on an extraordinary mission. Popov went to the University of Cambridge, England, to the famous Laboratory of Molecular Biology, a center of many of the world’s advances in microbiology, to absorb and copy the technology for DNA synthesis and bring it back. Travel abroad by a participant in the Soviet bioweapons program was highly unusual, and Popov’s trip had to be approved by the Central Committee of the Communist Party in Moscow. Popov went alone, without his family, posing as a civilian researcher for six months, studying intensively, and returned to Koltsovo with the know-how. He also had been given a glimpse of life in the West—something he never forgot.4

When he returned to Koltsovo, laborious and time-consuming synthesis of DNA got underway. The fragments of genetic material had to be fabricated from nucleotides, the fundamental units of nucleic acids, one by one. For a small gene, this might be feasible. For example, somatostatin, a growth regulatory hormone, is a tiny protein, only fourteen amino acids long. Scientists could synthesize it by making a DNA chain forty-two nucleotides long. But more complex genes could require hundreds or thousands of nucleotides. In his laboratory, Popov recalled, he often had more than fifty scientists with doctorate training engaged in this arduous work. “The labs were filled up with flasks, bottles of solvents and reagents, people standing in front of numerous fume hoods, doing that tedious, step-by-step chemical procedure.”

Yet the restless Sandakhchiev pushed him hard to synthesize enough genetic material to make artificial viruses. “From the beginning it seemed like a crazy idea,” Popov said, “but Sandakhchiev was a master of ambitious projects who set high goals. While we were struggling with making DNA fragments of 15 to 20 units long, he dreamed about thousands. We understood that in order to really speed things up we had to do the synthesis automatically. Sandakhchiev came up with the idea to build a huge warehouse or factory with automatic robots assembling DNA of different viruses. One virus a month, that would be an ideal productivity. And you could assemble biological weapons one after another.”

The World Health Organization campaign against smallpox had taken more than a decade to complete. Now Sandakhchiev was proposing to create a new virus every month.

“There was a green light given to Sandakhchiev’s idea,” Popov recalled. “What if the Soviet Union would be able to produce disease agents one after another? Agents with unbelievable efficacy, and without a means of protection against them? That was his brilliant idea.” Popov was told to study how to construct a “synthesizer,” an assembly line—what would it take? Sandakhchiev was interested in making SV40, a virus that causes cancer in monkeys, since the genetic sequence was the only one already known. It was more than five thousand nucleotides long. Popov told him it would require two or three years. Sandakhchiev was disappointed; he still wanted a new virus every month. “To me it sounded like extreme stupidity,” Popov said, but “Sandakhchiev clearly understood the rules of the game with the Soviet military lobby. He stunned the generals with crazy, crazy, crazy ideas, well ahead of others.”

In the early 1980s, Popov and others at Vector, in conjunction with another institute in Moscow, genetically engineered an agent to create artificial interferon, an antiviral substance produced in the body.5 Popov was decorated with a high state award for his work on interferon. Interferon was a valuable civilian invention, and part of Vector’s cover story. Meanwhile, behind the curtain, Vector began to study smallpox, hoping to give it new life as a biological weapon.

The smallpox virus is called Variola. The most severe and common is Variola major. Over the course of human history, Variola major claimed hundreds of millions of lives, and caused the most feared of deadly scourges. Historically, Variola major had an overall fatality rate of about 30 percent.6 Those who contracted smallpox suffered terribly. Jonathan Tucker, who has written extensively on smallpox, described it this way: “After a two-week incubation period, smallpox racked the body with high fever, headache, backache, and nausea, and then peppered the face, trunk, limbs, mouth and throat with hideous, pus-filled boils. Patients with the infection were in agony—their skin felt as if it was being consumed by fire, and although they were tormented by thirst, lesions in the mouth and throat made it excruciating to swallow.” For those who survived, the disease ran its course in two or three weeks. But it was highly transmissible, spread in the air by talking or sneezing, and remained contagious in clothing and bed linens. As recently as 1967, the disease sickened between 10 and 15 million people each year in forty-three countries and caused an estimated 2 million deaths.7

A long campaign to eradicate smallpox ended with the World Health Organization (WHO) declaration of success May 8, 1980. The WHO recommended the end of vaccinations worldwide. “The conquest of smallpox,” Tucker said, “the first—and so far, only—infectious disease to have been eradicated from nature by human effort,

Вы читаете The Dead Hand
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату