века. Они нуждались в зрительных трубах, даже на чердаке «Ученых женщин».[116]

30. Астрономические инструменты

Арбалестрилла (J) принадлежит к числу самых ранних приспособлений древнейшей астрономии. Наблюдение за солнцем и звездами издавна способствовало измерению течения времени. Отсюда очень простые инструменты, предназначенные облегчать такое наблюдение и, главное, делать его компаративным. Арбалестрилла — такая, какой она представлена здесь, датируется XVIII веком, — происходит от обыкновенной палки, к которой прикреплена случайно найденная поперечина. Крестьяне использовали рукоять своих орудий труда, солдаты — свою пику, отсюда обиходное название «посох Якоба».

Результат его эволюции (2) — представленный здесь инструмент датируется 1754 годом — английская кварта, или кварта Дэвиса, которая восходит к концу XV века. По форме она напоминает арбалестриллу, которую призвана была вытеснить. Арбалестрилла, которая несла два фиксированных полумолота, являющихся дугами концентрических окружностей, при этом радиус одной вдвое больше другого. Дуга наибольшего радиуса измеряет 30°, другая — 60°. Первоначально изготавливалась из дерева, обычно из груши, устойчивой к деформации, в XVIII веке предпочтительным стал металл.

В конце XVI века появляется поколение более совершенных инструментов, которые, однако, не вытесняют старые, более простые в употреблении и менее дорогие. К этому поколению принадлежит графометр (3). Представленный здесь инструмент самый древний, изготовлен Филиппом Данфри около 1597 года. «Он представляет собой полукруг из меди или латуни, диаметр имеет вид фиксированной линейки с диоптрами; подвижная линейка вращается вокруг центра и позволяет измерять угол между двумя направлениями, направлением на точку наблюдения и направлением на реперную точку» (М. Дома).

Геометрический квадрант (4) представлен по Диггсу — изобретателю и изготовителю инструментов наблюдения середины XVI века. Он состоит из квадратной медной пластины, на которой нанесена градуированная дуга круга, имеющая один из углов центром, и касательная по отношению к двум противоположным сторонам этого угла.

Чем они располагали до того? Итог подвести не долго. Но как же тогда Тихо Браге (1546–1601)? Сей крупный датский сеньор, «принадлежа к среде, далекой от каких-либо научных исканий — датская знать, одна из самых богатых в Европе, была в то же время одной из самых необразованных», — пишет Александр Койре, что, по крайней мере, давало ей досуг, — был истинным основателем астрономии наблюдения. Рассуждая о новой звезде 1572 года и комете 1577 года, он стал главным образом реформатором таблиц. Десятки тысяч наблюдений, в которые Браге вложил уйму денег, заслужили деятельное озлобление короля, которому надоело оплачивать его долги. Каков был его арсенал для подобной работы? Арбалестрилла, простая градуированная палка, используемая для астрономических наблюдений со времен античности, усовершенствованная в конце XVI века, такая, как ее описал Микаэл Конье в 1581 году; кварта Дэвиса, производное от арбалестриллы, к которой присоединены два круга; астролябия, полный металлический диск, на котором размечены углы; это наследие александрийской науки, «ее самого блистательного периода, совпадающего с Ренессансом», еще продолжало служить в начале XVII века. Графометр, медный или латунный полукруг, диаметр которого представляет собой линейку с диоптрами, уже сложнее и точнее. Но кульминацией наблюдений до появления зрительной трубы стала четверть крута (градуированные секторы). Четверть круга начал использовать Тихо Браге. «Инструменты Тихо Браге измеряли вплоть до примерно трех радиальных метров». Наконец, квадрант, или геометрический квадрат, эффективный для измерения звездных высот, и, пожалуй, шедевр измерительных инструментов до зрительной трубы — теодолит. Эта хитроумная комбинация горизонтального круга и вертикального полукруга традиционно приписывается Леонарду Диггсу; первое описание — сделанное Томасом Диггсом, сыном Леонарда, — датируется 1571 годом. Кроме этого довольно простого инструментария, хорошо знакомого астрономам, геометрам, землемерам и навигаторам, ученые первых лет XVII века располагали также общим с инженерами достоянием — циркулем пропорций. Галилей (1606) и Капра (1607) оспаривают свое авторство на него. Аллом, инженер короля, вел с его помощью строительство в Париже 1610–1615 годов. С конца XVI века используется также пропорционально-редуктивный циркуль. Это немецкое. Плоские линейки, разделенные на десять и сто равных частей, шкалы синусов, тангенсов и секансов, линейки, угломеры, циркуль, скорее принадлежность чертежника-геометра, рейсфедер, перья, транспортир, измерительный циркуль, грифельный, рейсфедерный оказались на столе математика первых десятилетий XVII века. Этот стол показался бы нам скорее загроможденным, чем скудным, в конечном счете математики начала XVII века оставались архаичными, иначе говоря, больше геометрами, чем алгебраистами: Виет уже позади, зато Ферма впереди.

В начале XVII века произошло чудесное появление измерительных инструментов и устройств, усиливающих чувствительность. Одно устройство прошло свой путь в несколько лет. В 1611 году появляется зрительная труба из темного стекла, и с ее помощью сначала Фабрициус, потом Галилей и отец Шейнер обнаруживают солнечные пятна. Темные пятна на Солнце — и Декарт в «Метеорах» (1637) делает вывод (одна гениальная мысль из десяти тысяч других), что Земля — это остывшее солнце. Но если Земля — это остывшее солнце, то подрывается традиционная хронология. Счет шел на тысячелетия, теперь стали умножать на сто и на тысячу. И всё благодаря куску темного стекла в астрономической трубе. Оптики, зеркальщики, искусные на руку ученые, любопытные или имеющие досуг люди церкви работали над созданием первых зрительных труб, принцип которых был открыт случайно.

Что касается стекла, то впереди была Италия, за ней Голландия. Изготовителями и продавцами зрительной трубы стали настоящие ученые. Полученная выгода помогала им питать собственные исследования. «Личные мастерские Галилея и Шейнера. — пишет М. Дома, — пошли от первых зрительных труб, использовавшихся астрономами; у Торричелли была обширная клиентура. Отец де Рейта, отец Керубен, Пьер Борель, Озу, Гюйгенс, Гук изготовляли эти приспособления с целью получения дохода». Почти все ученые XVII века изготовляли оптические стекла. В 1-ю пол. XVIII века — то же самое. Это была, конечно, математика, но конкретная и практичная, энциклопедическая, с незавершенным разделением труда, наука же XVII века оставалась наукой глобальной. В этом пункте она не вполне порвала с традицией схоластической. Самая большая проблема была связана с качеством стекла и однородностью продукта. Известно, до какой свирепости дошла полемика Озу с Гуком и Кампани по поводу свойств и качества стекла. Гласность обеспечивалась книгами, перепиской, газетами и научными обществами.

Начиная с 1630—1640-х годов наука без зрительной трубы уже немыслима. С 1625 года ее изготовление стало предприятием коммерческим. Самой старой из известных мастерских была принадлежащая Корезу, за ним следом идут два итальянца Эстачио Дивини и Джузеппе Кампани. Во Франции около 1650 года — Леба и Менар, в Англии — Кук и Ривз.

Кеплер в «Диоптрике» (1611) формулирует первые, еще приблизительные законы. Кеплеру принадлежит заслуга открытия a priori принципа настоящей астрономической трубы с перевернутым изображением, с двояковогнутым объективом и окуляром, за четыре по крайней мере года до того, как иезуит Шейнер изготовил ее первый образец. Первые зрительные трубы — позднее их назовут галилеевыми, или голландскими, трубами — были простыми морскими подзорными трубами с выпрямляющими изображение вогнутым объективом и выпуклым окуляром. Симптоматичный факт: Кеплер, опубликовавший в 1611 году принцип астрономической трубы и умерший в 1630 году, так и не узнал о существовании инструмента, которым отец Шейнер пользовался с 1615 года.

Следуя путем, намеченным Кеплером, Снеллиусом (ум. в 1626 году, открыл закон рефракции) и Кавальери (1632 год — обобщение изучения фокусных расстояний вогнутых линз), а затем руководствуясь «Диоптрикой» 1637 года (описание, кроме всего прочего, закона рефракции через призму закона синуса), Декарт дал многочисленные решения и еще больше надежд.

Христиан Гюйгенс заставил оптику превратиться не только в теорию, но и в практику. Он взялся за ключевую проблему — от ее решения зависел прогресс инструментария — за проблему хроматических аберраций. Он доказал, что аберрацию можно уменьшить, увеличивая фокусное расстояние по отношению к поверхности линзы. Кроме всего прочего, ему принадлежит заслуга создания первой большой воздушной

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату