С; добьемся того, чтобы на протяжении всего опыта ее значение оставалось постоянным, и, меняя значение другой, к примеру А, будем определять вызванные этим изменения значений третьей стороны В. Мы получим два ряда соответствующих друг другу значений.

Это будет табличное выражение зависимости, которая существует в данном объекте между А и В. Чтобы выразить эту зависимость, мы должны будем произвести определенные сопоставления найденных значений и подобрать ту аналитическую математическую форму, которая будет соответствовать всем зафиксированным в таблице значениям. Пусть это будет β = f1(α). Это математическое выражение даст нам определенное изображение рассматриваемого объекта, именно, эмпирическое изображение
Но поставим перед собой вопрос: в какой мере эта математическая функция является изображением
Иначе можно сказать так: функция β = f1(α) изображает действие связи А <-> В, модифицированное наличием всех других связей объекта; она изображает связь А <-> В такой, как она действует и проверяется в структуре всех других связей. Это означает, между прочим, что в функции β = f1(α) уже учитывается
Проведенное рассуждение мы можем, очевидно, повторить для зависимости С от А при фиксированном В, затем — для зависимости С от В при фиксированном А, потом — для зависимости А от В при фиксированном С, и т. д. Всего мы получим 6 функций:

Каждая из них будет фиксировать зависимость между двумя сторонами объекта, тем самым, конечно, и связь между этими сторонами-элементами. Но не саму по себе связь, не как таковую, а лишь в том виде, как она проявляется при наличии и действии других связей этой структуры. Каждая будет выражением эмпирического знания
Специально отметим, что использование аппарата функций двух переменных тоже не может помочь делу. Мы прибегаем к нему в том случае, когда при исследовании зависимости двух сторон объекта не можем сохранить постоянным значение третьей. Но использование этого аппарата нисколько не приближает нас к выделению
Рассматривая значения двух сторон как независимые переменные, мы очевидно объединяем действия двух связей в одном выражении, скажем, А <-> В и С <-> В, а третью, А <-> С, просто игнорируем. Получив систему уравнений мы придем к положению, аналогичному разобранному выше.

Этот пример дает отчетливое представление о различии эмпирического, представленного в данном случае в математических функциях, и абстрактно-логического описания структуры объекта.
Таким образом, сколько мы ни движемся в эмпирической сфере и сколько мы ни заходим с разных ее сторон, реальная структура объекта остается невыясненной. «Черный ящик» остается «черным ящиком». Чтобы выделить каждую из связей структуры объекта в чистом виде, нужны иные приемы и способы анализа, нежели описанные выше эмпирические сопоставления. В науке разработка этих приемов и способов анализа началась, по-видимому, с периода Возрождения, именно с Галилея, хотя у него, конечно, были предшественники.
Свободное падение тел начал рассматривать уже Аристотель, и он исследовал его чисто эмпирически: брал различные по весу тела и измерял время падения их с одной и той же высоты; способы измерения времени были тогда весьма приблизительными, и в пределах достигаемой точности отчетливо обнаруживалось монотонное сокращение времени падения при увеличении веса тела. Формулировались качественные законы: «чем тяжелее тело, тем меньшее время оно падает с той же высоты», или «чем тяжелее тело, тем быстрее оно падает». Сопоставление рядов значений веса и времени падения давало формулы зависимости, приблизительно верные в довольно широкой области значения: t = k/p. Эти формулы проверялись и уточнялись в течение чуть ли не двух тысяч лет, но все оставалось по сути без изменения. Еще у Леонардо да Винчи мы находим очень остроумные схемы эксперимента, направленные на проверку этого закона, но они, как и все другие, могли показать в лучшем случае его неточность, в конце концов, дать какую-то очень сложную формулу, показывающую зависимость скорости падения тел от их веса, но никогда и никак не могли привести к современной теоретической формуле, данной Г. Галилеем: «Все тела падают на землю одинаково, независимо от их веса». И надо заметить, что если бы мы захотели проверить эту общепризнанную и совершенно правильную формулу эмпирически, в наших естественных условиях, т. е. там, где она по сути должна применяться, то убедились бы только в одном — что она не соответствует эмпирической действительности. Это знание является абстрактно-логическим.
Приемы и способы эмпирической выработки таких знаний усиленно разрабатывались в ряде наук, но каких-либо существенных результатов получено не было. Поэтому на каком-то этапе развития науки была перевернута сама задача: основным методом исследования стало
Если раньше шли от эмпирически выявленных зависимостей
Такими были уже самые первые исследования структур в механике (И. Бернулли, Ж. Д'Аламбер). Их метод был перенесен затем в исследования строения вещества (так называемые «молекулярно- кинетические», «электронные» теории и т. п.), а в последнее время получил распространение и во всех других науках. По существу такое переворачивание задачи является, по-видимому, единственным известным нам сейчас продуктивным средством и способом исследования и воспроизведения в мысли структур объектов.
Но вместе с тем — и эта сторона дела должна быть отчетливо осознана — то обстоятельство, что структуры объектов-моделей строятся, конструируются, не снимает задачи эмпирического анализа структуры исходных исследуемых объектов. В господствующих течениях современной позитивистской методологии или «логики науки» проблема построения систем моделей получила специфически математическую окраску и берется крайне односторонне. Вопрос о соответствии модели исходному объекту, или, иначе, вопрос об «адекватности» модели (конечно, относительно определенной задачи), отодвигается на задний план или