С; добьемся того, чтобы на протяжении всего опыта ее значение оставалось постоянным, и, меняя значение другой, к примеру А, будем определять вызванные этим изменения значений третьей стороны В. Мы получим два ряда соответствующих друг другу значений.

Это будет табличное выражение зависимости, которая существует в данном объекте между А и В. Чтобы выразить эту зависимость, мы должны будем произвести определенные сопоставления найденных значений и подобрать ту аналитическую математическую форму, которая будет соответствовать всем зафиксированным в таблице значениям. Пусть это будет β = f1(α). Это математическое выражение даст нам определенное изображение рассматриваемого объекта, именно, эмпирическое изображение зависимости стороны В от стороны А при постоянном С.

Но поставим перед собой вопрос: в какой мере эта математическая функция является изображением связи между А и В в структуре объекта? Простое рассуждение показывает, что фактически ни в какой. Ведь изменение значений В после вызванных нами изменений значений А было результатом не только непосредственной связи между А и В, но в такой же мере и опосредствованной связи А — > С — > В (тот факт, что С оставалось неизменным в ходе опыта, в общем случае нисколько не говорит о том, что этой связи вообще не было или что она «не работала»). Но и этого мало, одним из компонентов этого изменения В была и обратная связь В с А через С. Таким образом, можно сказать, что функция β = f1(α) изображает не связь В с А как таковую, а суммарное действие целого ряда связей, по существу всех связей в структуре объекта — и А <-> В, и В <-> А, и А <-> С <-> В, и В <-> С <-> А.

Иначе можно сказать так: функция β = f1(α) изображает действие связи А <-> В, модифицированное наличием всех других связей объекта; она изображает связь А <-> В такой, как она действует и проверяется в структуре всех других связей. Это означает, между прочим, что в функции β = f1(α) уже учитывается в неявном виде наличие действия всех других связей объекта, но именно скрыто, невыделенно. Функция β = f1(α) есть, таким образом, не изображение связи А <- > В, а изображение всего рассматриваемого объекта с определенной стороны.

Проведенное рассуждение мы можем, очевидно, повторить для зависимости С от А при фиксированном В, затем — для зависимости С от В при фиксированном А, потом — для зависимости А от В при фиксированном С, и т. д. Всего мы получим 6 функций:

Каждая из них будет фиксировать зависимость между двумя сторонами объекта, тем самым, конечно, и связь между этими сторонами-элементами. Но не саму по себе связь, не как таковую, а лишь в том виде, как она проявляется при наличии и действии других связей этой структуры. Каждая будет выражением эмпирического знания об объекте в целом и не будет давать знания о соответствующей связи в чистом виде. И как бы мы ни пытались выделить эту связь посредством чисто эмпирического анализа, нам это не удастся: мы каждый раз будем получать проявление суммарного действия всех связей структуры.

Специально отметим, что использование аппарата функций двух переменных тоже не может помочь делу. Мы прибегаем к нему в том случае, когда при исследовании зависимости двух сторон объекта не можем сохранить постоянным значение третьей. Но использование этого аппарата нисколько не приближает нас к выделению структурных связей объекта как таковых.

Рассматривая значения двух сторон как независимые переменные, мы очевидно объединяем действия двух связей в одном выражении, скажем, А <-> В и С <-> В, а третью, А <-> С, просто игнорируем. Получив систему уравнений мы придем к положению, аналогичному разобранному выше.

Этот пример дает отчетливое представление о различии эмпирического, представленного в данном случае в математических функциях, и абстрактно-логического описания структуры объекта.

Таким образом, сколько мы ни движемся в эмпирической сфере и сколько мы ни заходим с разных ее сторон, реальная структура объекта остается невыясненной. «Черный ящик» остается «черным ящиком». Чтобы выделить каждую из связей структуры объекта в чистом виде, нужны иные приемы и способы анализа, нежели описанные выше эмпирические сопоставления. В науке разработка этих приемов и способов анализа началась, по-видимому, с периода Возрождения, именно с Галилея, хотя у него, конечно, были предшественники.

Свободное падение тел начал рассматривать уже Аристотель, и он исследовал его чисто эмпирически: брал различные по весу тела и измерял время падения их с одной и той же высоты; способы измерения времени были тогда весьма приблизительными, и в пределах достигаемой точности отчетливо обнаруживалось монотонное сокращение времени падения при увеличении веса тела. Формулировались качественные законы: «чем тяжелее тело, тем меньшее время оно падает с той же высоты», или «чем тяжелее тело, тем быстрее оно падает». Сопоставление рядов значений веса и времени падения давало формулы зависимости, приблизительно верные в довольно широкой области значения: t = k/p. Эти формулы проверялись и уточнялись в течение чуть ли не двух тысяч лет, но все оставалось по сути без изменения. Еще у Леонардо да Винчи мы находим очень остроумные схемы эксперимента, направленные на проверку этого закона, но они, как и все другие, могли показать в лучшем случае его неточность, в конце концов, дать какую-то очень сложную формулу, показывающую зависимость скорости падения тел от их веса, но никогда и никак не могли привести к современной теоретической формуле, данной Г. Галилеем: «Все тела падают на землю одинаково, независимо от их веса». И надо заметить, что если бы мы захотели проверить эту общепризнанную и совершенно правильную формулу эмпирически, в наших естественных условиях, т. е. там, где она по сути должна применяться, то убедились бы только в одном — что она не соответствует эмпирической действительности. Это знание является абстрактно-логическим.

Приемы и способы эмпирической выработки таких знаний усиленно разрабатывались в ряде наук, но каких-либо существенных результатов получено не было. Поэтому на каком-то этапе развития науки была перевернута сама задача: основным методом исследования стало

конструирование структурных моделей

Если раньше шли от эмпирически выявленных зависимостей сторон объектов к определяющим их структурным связям и таким образом анализировали, расчленяли в абстракциях заданный объект, то теперь уже в исходной точке начали строить, конструировать другой объект, структурный, который рассматривается как заместитель или модель исследуемого объекта и именно для этого создается. Поскольку структура модели строится самим исследователем, она известна, а поскольку она рассматривается как модель исследуемого объекта, то считается познанной и структура последнего.

Такими были уже самые первые исследования структур в механике (И. Бернулли, Ж. Д'Аламбер). Их метод был перенесен затем в исследования строения вещества (так называемые «молекулярно- кинетические», «электронные» теории и т. п.), а в последнее время получил распространение и во всех других науках. По существу такое переворачивание задачи является, по-видимому, единственным известным нам сейчас продуктивным средством и способом исследования и воспроизведения в мысли структур объектов.

Но вместе с тем — и эта сторона дела должна быть отчетливо осознана — то обстоятельство, что структуры объектов-моделей строятся, конструируются, не снимает задачи эмпирического анализа структуры исходных исследуемых объектов. В господствующих течениях современной позитивистской методологии или «логики науки» проблема построения систем моделей получила специфически математическую окраску и берется крайне односторонне. Вопрос о соответствии модели исходному объекту, или, иначе, вопрос об «адекватности» модели (конечно, относительно определенной задачи), отодвигается на задний план или

Вы читаете Избранные труды
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату