выделить два полярных типа: один фиксирует зависимости или связи между свойствами, признаками объектов, другой — связи между самими объектами, рассматриваемыми в качестве элементов целого. Характерным примером знания первого типа является аналитическая форма выражения какого-либо «закона», скажем закона Бойля — Мариотта о зависимости между объемом и давлением газа: pV = const. Примером знания второго типа может служить описание структурной формулы какого-либо химического соединения, скажем, в простейшем случае вида: Са(ОН)2. И если мы возьмем знания о связях второго типа, то оказывается, что как способы их построения, так и способы формального оперирования с ними совершенно не соответствуют тому, что А. А. Зиновьев описал в понятиях «объектов сопоставления», ситуаций и наборов. Его понятие построено таким образом, что не может охватить и выразить связи между элементами реальной структуры объектов, элементами, получаемыми путем
Из этого же утверждения мы можем вывести и второе противоречие существующего понятия связи. Дело в том, что «объекты», фигурирующие в таблицах ситуации
Дело в том, что содержание знаний о связи задается не только тем, какие сопоставления осуществляются в плоскости исходных объектов, но также и тем, в каких знаковых средствах фиксируется выявленное таким образом содержание, и что именно, в соответствии с этим, становится объектом последующих сопоставлений. Подавляющее большинство современных знаний о связях имеет своим содержанием сопоставления, в которых участвуют, кроме самих объектов, разлагаемых на части и синтезируемых из этих частей, еще знаки разного типа, лежащие в различных плоскостях замещения и «снимающие» в себе разное содержание. Например, в современной химии это, кроме самих реагирующих веществ и описаний их меняющихся свойств, еще формулы состава, структурные формулы, физико- химические и физические модели атомов и молекул вещества. И сопоставление, выделяющее в объектах новое содержание, в частности их структуру, идет все время за счет переходов от одних знаковых средств и плоскостей замещения к другим. Как бы «в разрезе» вся эта система замещений и происходящих на его основе сопоставлений изображена на схеме 13.

Надо специально сказать, что появление особых изображений состава и структуры химических соединений или физико-химических и физических моделей вещества кардинальным образом меняет характер рассуждений и выводов в химии. Меняется сама логика мышления, логические правила содержательного и формального решения задач. В частности, меняются способы построения высказываний о связях: чтобы получить знания о связях на основе уже имеющихся структурных формул, нужны совсем иные схемы сопоставлений и вообще процедур, нежели те, к которым мы должны были прибегать, получая знания о связях на основе формул состава. И то же самое происходит во всех других науках по мере развития их знаковых средств и появления новых плоскостей замещения.
Поэтому вполне естественно, что логическая теория знаний о связях, не учитывающая этих моментов, оказывается очень ограниченной и не может охватить не только всех, но даже самых главных типов этих знаний. Чтобы построить действительно общую логическую теорию высказываний о связях, нужен принципиально иной подход к проблеме, иные логические основания, и в частности учитывающие, с одной стороны, эмпирическое различение связей между объектами и связей между признаками, а с другой — многоплоскостное строение всякого знания. Реализуя этот принцип, мы хотим рассмотреть
Анализ истории мышления показывает, что все исходные понятия связи возникают на пересечении ряда способов анализа объектов и поэтому объединяют и снимают в себе разные группы мыслительных процедур. Чтобы показать сам способ рассуждения при анализе их, мы разберем упрощенную комбинацию из нескольких таких мыслительных процедур.
Первая — чисто эмпирическое выявление сначала
Лишь через некоторое время ученик Бойля — Ричард Тоунлей — заметил, что произведение давления на объем остается примерно постоянным, выделил таким образом инвариант, и это позволило зафиксировать в аналитической форме формулы (и функции) саму
Математическая теория пропорций дала оперативную знаковую форму для выражения эмпирически выявленной зависимости между двумя свойствами объекта.
Вторую мыслительную процедуру можно назвать «объяснением» категории зависимости. После того как были зафиксированы и получили математическую форму выражения первые простейшие зависимости между свойствами объектов, начался длительный период поисков их объяснений. Мы не обсуждаем сейчас вопроса о тех причинах, которые сделали необходимым такое объяснение, и об условиях, которые сделали возможным его появление; мы принимаем это как исторический факт. Средством подобных объяснений стали «инженерные конструкции», т. е. «искусственные», как-то связанные друг с другом объекты. Это могли быть, к примеру, два шара, скрепленных стержнем, веревкой или пружиной.
Представление об этих «искусственных» объектах по сути дела «накладывалось» на эмпирически выявляемые зависимости между свойствами исследуемых «естественных» объектов и становилось средством

и вместе с тем как
а a1 a2 а3 a4 b b1 b2 b3 b4
которую можно будет затем выразить в виде той или иной аналитически представленной зависимости. «Искусственная» инженерная конструкция в виде двух связанных между собой объектов превратилась в