выделить два полярных типа: один фиксирует зависимости или связи между свойствами, признаками объектов, другой — связи между самими объектами, рассматриваемыми в качестве элементов целого. Характерным примером знания первого типа является аналитическая форма выражения какого-либо «закона», скажем закона Бойля — Мариотта о зависимости между объемом и давлением газа: pV = const. Примером знания второго типа может служить описание структурной формулы какого-либо химического соединения, скажем, в простейшем случае вида: Са(ОН)2. И если мы возьмем знания о связях второго типа, то оказывается, что как способы их построения, так и способы формального оперирования с ними совершенно не соответствуют тому, что А. А. Зиновьев описал в понятиях «объектов сопоставления», ситуаций и наборов. Его понятие построено таким образом, что не может охватить и выразить связи между элементами реальной структуры объектов, элементами, получаемыми путем разложения этой структуры. И в этом мы видим его первое основное противоречие. Но тогда из этого утверждения должен следовать еще и вопрос: каким образом мы выявляем связи структуры самих объектов?

Из этого же утверждения мы можем вывести и второе противоречие существующего понятия связи. Дело в том, что «объекты», фигурирующие в таблицах ситуации сопоставления, являются на самом деле не объектами, а предметами знания, но предметы являются не чем иным, как связками замещения операционно выделенных содержаний знаками, и рассматривать их нужно именно таким образом, т. е. учитывая многие плоскости знакового замещения и анализируя, что нового вносит в процесс выявления содержания знания каждая из них. То, что в существующем понятии связи не учитывается эта сторона дела, является важнейшим его дефектом, и именно из-за этого в нем не удается «схватить» реальные языковые средства и особенности содержания различных научных высказываний о связях.

Дело в том, что содержание знаний о связи задается не только тем, какие сопоставления осуществляются в плоскости исходных объектов, но также и тем, в каких знаковых средствах фиксируется выявленное таким образом содержание, и что именно, в соответствии с этим, становится объектом последующих сопоставлений. Подавляющее большинство современных знаний о связях имеет своим содержанием сопоставления, в которых участвуют, кроме самих объектов, разлагаемых на части и синтезируемых из этих частей, еще знаки разного типа, лежащие в различных плоскостях замещения и «снимающие» в себе разное содержание. Например, в современной химии это, кроме самих реагирующих веществ и описаний их меняющихся свойств, еще формулы состава, структурные формулы, физико- химические и физические модели атомов и молекул вещества. И сопоставление, выделяющее в объектах новое содержание, в частности их структуру, идет все время за счет переходов от одних знаковых средств и плоскостей замещения к другим. Как бы «в разрезе» вся эта система замещений и происходящих на его основе сопоставлений изображена на схеме 13.

Надо специально сказать, что появление особых изображений состава и структуры химических соединений или физико-химических и физических моделей вещества кардинальным образом меняет характер рассуждений и выводов в химии. Меняется сама логика мышления, логические правила содержательного и формального решения задач. В частности, меняются способы построения высказываний о связях: чтобы получить знания о связях на основе уже имеющихся структурных формул, нужны совсем иные схемы сопоставлений и вообще процедур, нежели те, к которым мы должны были прибегать, получая знания о связях на основе формул состава. И то же самое происходит во всех других науках по мере развития их знаковых средств и появления новых плоскостей замещения.

Поэтому вполне естественно, что логическая теория знаний о связях, не учитывающая этих моментов, оказывается очень ограниченной и не может охватить не только всех, но даже самых главных типов этих знаний. Чтобы построить действительно общую логическую теорию высказываний о связях, нужен принципиально иной подход к проблеме, иные логические основания, и в частности учитывающие, с одной стороны, эмпирическое различение связей между объектами и связей между признаками, а с другой — многоплоскостное строение всякого знания. Реализуя этот принцип, мы хотим рассмотреть

«логическое окружение» понятии связи

Анализ истории мышления показывает, что все исходные понятия связи возникают на пересечении ряда способов анализа объектов и поэтому объединяют и снимают в себе разные группы мыслительных процедур. Чтобы показать сам способ рассуждения при анализе их, мы разберем упрощенную комбинацию из нескольких таких мыслительных процедур.

Первая — чисто эмпирическое выявление сначала соотношения, а потом зависимости двух свойств-параметров какого-либо объекта или явления. Простейшая иллюстрация этой линии исследования объектов — выявление зависимости между давлением и объемом газа в полемике Р. Бойля против Линуса [Розенбергер, 1937, ч. II, с. 136]. Бойлю нужно было убедить Линуса в существовании сопротивления воздуха. Он взял изогнутую в виде сифона стеклянную трубку с запаянным коротким коленом и наполнил ее через длинное (открытое) колено ртутью. По мере приливання ртути воздух в коротком колене сжимался, но продолжал уравновешивать все больший и больший столб ртути. Чтобы охарактеризовать «сопротивление» воздуха, Бойлю нужно было сопоставить уменьшающиеся объемы воздуха и соответствующие избытки давления в длинном колене. Самой «естественной» формой фиксации соотношения объемов и избытков давления была таблица pV

Лишь через некоторое время ученик Бойля — Ричард Тоунлей — заметил, что произведение давления на объем остается примерно постоянным, выделил таким образом инвариант, и это позволило зафиксировать в аналитической форме формулы (и функции) саму зависимость между давлением и объемом p1V1= p2V2= p3V3=… = PV = const; p = с/V, V = c/p.

Математическая теория пропорций дала оперативную знаковую форму для выражения эмпирически выявленной зависимости между двумя свойствами объекта.

Вторую мыслительную процедуру можно назвать «объяснением» категории зависимости. После того как были зафиксированы и получили математическую форму выражения первые простейшие зависимости между свойствами объектов, начался длительный период поисков их объяснений. Мы не обсуждаем сейчас вопроса о тех причинах, которые сделали необходимым такое объяснение, и об условиях, которые сделали возможным его появление; мы принимаем это как исторический факт. Средством подобных объяснений стали «инженерные конструкции», т. е. «искусственные», как-то связанные друг с другом объекты. Это могли быть, к примеру, два шара, скрепленных стержнем, веревкой или пружиной.

Представление об этих «искусственных» объектах по сути дела «накладывалось» на эмпирически выявляемые зависимости между свойствами исследуемых «естественных» объектов и становилось средством понимания их: одно свойство объекта меняется в результате изменения другого, или, иначе, одно зависит от другого, потому что они как-то связаны друг с другом. Исследователь начинал «видеть» таблицу меняющихся значений свойств а и b сквозь образ связанных между собой шаров, представлял ее как результат изменений в состоянии связи

и вместе с тем как проявление самой этой связи. Если, к примеру, мы будем менять «положение» а, то соответственно изменится положение b, и это найдет себе выражение в таблице

а a1 a2 а3 a4 b b1 b2 b3 b4

которую можно будет затем выразить в виде той или иной аналитически представленной зависимости. «Искусственная» инженерная конструкция в виде двух связанных между собой объектов превратилась в объяснительную модель эмпирически выявляемых и фиксируемых в таблицах и функциях зависимостей.

Вы читаете Избранные труды
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату