Когда Кэррол рассказывает про параллелограмм, который вздыхает по внешним углам и сетует, что не может быть вписан в круг, или про кривую, страдающую от 'рассечении и изъятий', которым ее подвергают, то нужно помнить, что психологические и нравственные персонажи тоже созданы из до-личных сингулярностей, что их чувства и пафос тоже заданы в окрестности этих сингулярностей, чувствительных критических точек, поворотных пунктов, точек кипения, узелков и преддверий (того, что Кэррол, например, называет простой гнев и праведный гнев). Две линии Кэррола вызывают две резонирующие серии. Их устремления вызывают распределения сингулярностей, переходящих одна в другую и перераспределяю84 ПРОБЛЕМАТИЧЕСКОЕ щихся в ходе узелковой истории. Как говорил Кэррол, 'гладкая поверхностность это характер повествования, в котором, какие две точки не возьми, оказывается, что говорящий псевдо- целиком разлегся [s'etendre en tout-en-faux] относительно этих двух точек'6. В Динамике частицы Кэррол дает очерк теории серий и теории степеней и сил частиц, организованных в эти серии ('LSD, функция большой ценности...'). События можно обсуждать только в контексте тех проблем, чьи условия определены этими событиями. События можно обсуждать только как сингулярности, развернутые в проблематическом поле, в окрестности которого происходит отбор решений. Вот почему все работы Кэррола пронизаны целостным методом проблем и решений, устанавливающим научный язык событий и их осуществлений. Итак, если распределения сингулярностей, соответствующие каждой серии, формируют поля проблем, то как тогда охарактеризовать парадоксальный элемент, пробегающий по этим сериям, заставляющий их резонировать, коммуницировать и разветвляться элемент, управляющий всеми повторениями, превращениями и перераспределениями? Сам этот элемент следует определять как место вопроса. Проблема задается сингулярными точками, соответствующими сериям, но вопрос определяется некой случайной точкой, соответствующей пустому месту или подвижному элементу. Метаморфозы и перераспределения сингулярностей формируют историю. Каждая комбинация и каждое распределение - это событие. Но парадоксальный элемент - это Событие, в котором коммуницируют и распределяются все события. Это - Уникальное событие, а все другие события являются его фрагментами и частями. Позже Джеймс Джойс сможет придать смысл методу вопросов и ответов, дублирующему метод проблем - Выпытывание, которое обосновывает Проблематическое. Вопрос развора__________ 6 Словосочетанием 'псевдо-разлегся' [s'etendre en faux] мы попытались перевести английский глагол to lie. (Французское слово faux означает 'ложный, неверный, фальшивый'; s'etendre - 'тянуться, растягиваться, простираться'. Английский же глагол to lie имеет два разных основных значения - лгать и лежать. - Примечание переводчика.) 85 ЛОГИКА СМЫСЛА чивается в проблемы, а проблемы сворачиваются в неком фундаментальном вопросе. И так же как решения не подавляют проблем, а напротив, открывают в них присущие им условия, без которых проблемы не имели бы смысла, - так и ответы вовсе не подавляют и даже не нейтрализуют вопрос, упорно сохраняющийся во всех ответах. Следовательно, существует некий аспект, в котором проблемы остаются без решения, а вопрос без ответа. Именно в этом смысле проблема и вопрос обозначают идеальные объективности и обладают своим собственным бытием - минимумом бытия (например, 'загадки без разгадки' в Алисе). Мы уже увидели, что эзотерические слова существенно связаны с проблемой и вопросом. С одной стороны, слова-бумажники неотделимы от проблемы, которая разворачивается в разветвленные серии. Эта проблема вовсе не выражает субъективную неопределенность. Напротив, она выражает объективное равновесие разума, помещенного прямо в горизонте того, что случается или является: Ричард или Вильям? Злой-опасный или опасный-злой? В обоих случаях распределение сингулярностей налицо. С другой стороны, пустые слова или, точнее, слова, обозначающие пустое слово, неотделимы от вопроса, который сворачивается и перемещается по сериям. Вопрос связан с тем самым элементом, которого никогда нет на своем месте, который не походит на себя самого и несамотождественен, и который поэтому является объектом фундаментального вопроса, перемещающегося вместе с ним: что такое Снарк? что такое Флисс? что такое Это? Оставаясь рефреном песни, чьи куплеты формируют множество серий, по которым он циркулирует в облике магического слова, чьи все имена, которыми песня 'называется', не заполняют пустоты, - этот парадоксальный элемент обладает именно тем сингулярным бытием, той 'объективностью', которая соответствует вопросу как таковому и при этом никогда не дает на него никакого ответа.
Десятая серия: идеальная игра Льюис Кэррол не только изобретает игры и видоизменяет правила уже известных игр (теннис, крокет), но вводит и некий вид идеальной игры, чей смысл и функцию трудно оценить с первого взгляда. Например, бег по кругу в Алисе, где каждый начинает, когда вздумается, и останавливается, когда захочет; или крокетный матч, где мячи - ежики, клюшки - фламинго, а свернутые петлей солдаты-ворота непрестанно перемещаются с одного конца игрового поля на другой. У этих игр есть общие черты: в них очень много движения; у них, по-видимому, нет точных правил; они не допускают ни победителей, ни побежденных. Нам не 'знакомы' такие игры, которые, как кажется, противоречат сами себе. Знакомые нам игры отвечают определенному числу принципов, которые могут стать объектом теории. Эта теория применима равным образом как к играм, основанным на ловкости участников, так и к играм, где все решает случаи, хотя природа правил здесь разная. 1) Нужно, чтобы всякий раз набор правил предшествовал началу игры, а в процессе игры - обладал безусловным значением. 2) Данные правила определяют гипотезы, распределяющие шансы, то есть, гипотезы проигрыша и выигрыша (что случится, если...). 3) Гипотезы регулируют ход игры в соответствии с множеством бросков, которые реально или численно отличаются друг от друга. Каждый из них задает фиксированное распределение, соответствующее тому или иному случаю. (Даже если игра держится на одном броске, то такой бросок будет сочтен удачным только благодаря фиксированному распределению, которое он задаст, а также в силу его численных особенностей.) 4) Результаты бросков ранжируются по альтернативе 'победа или поражение'. Следо87 ЛОГИКА СМЫСЛА вательно, для нормальной игры характерны заранее установленные безусловные правила; гипотезы, распределяющие шансы; фиксированные и численно различающиеся распределения; твердые результаты. Такие игры частичны в двух отношениях: прежде всего, они характеризуют лишь часть человеческой деятельности, а кроме того, даже если возвести их в абсолют, то они удерживают случай лишь в определенных точках, подразумевая механическое развитие последовательностей или сноровку, понятую как искусство каузальности. Таким образом, они неизбежно - сами имея смешанный характер - отсылают к другому типу деятельности, труда или этики, чьей карикатурой и двойником они являются и чьи элементы они объединяют в новый порядок. Будь то рискующий на пари человек Паскаля или играющий в шахматы Бог Лейбница, такие игры явным образом берутся в качестве модели именно потому, что за ними неявно стоит иная модель - уже не игра: нравственная модель Хорошего или Наилучшего, экономическая модель причин и эффектов, средств и целей. Но недостаточно противопоставлять некую 'старшую' игру младшей игре человека или божественную игру человеческой игре. Нужно вообразить другие принципы - пусть даже ни к чему не приложимые, но благодаря которым игра стала бы чистой игрой. 1) Нет заранее установленных правил, каждое движение изобретает и применяет свои собственные правила. 2) Нет никакого распределения шансов среди реально различного числа бросков; совокупность бросков утверждает случай и бесконечно разветвляет его с каждым новым броском. 3) Следовательно, броски реально или численно неотличимы. Но они различаются качественно, хотя и являются качественными формами онтологически единственного броска. Каждый бросок сам есть некая серия, но по времени значительно меньшая, чем минимум непрерывного мыслимого времени; и распределение сингулярностей соответствует этому сериальному минимуму. Каждый бросок вводит сингулярные точки - например, точки на игральной кости. Но вся совокупность бросков заключена в случайной точке, в уникальном бросании, которое непрестанно перемещается через все серии, за время 88 ИДЕАЛЬНАЯ ИГРА значительно большее, чем максимум непрерывного мыслимого времени. Броски последовательны в отношении друг друга и одновременны по отношению к такой точке, которая всегда меняет правила, которая координирует и разветвляет соответствующие серии, незаметно вводя случай на всем протяжении каждой серии. Уникальное бросание - это хаос, каждый бросок которого - некий фрагмент. Каждый бросок управляет распределением сингулярностей, созвездием. Но вместо замкнутого пространства, поделенного между фиксированными результатами, в соответствии с гипотезами [о распределении], подвижные результаты распределяются в открытом пространстве уникального и неделимого броска. Это - номадическое, а не оседлое, распределение, где каждая система сингулярностей коммуницирует и резонирует с другими, причем другие системы включают данную систему в себя, а она, одновременно, вовлекает их в самый главный бросок. Это уже игра проблем и вопроса, а не категорического и гипотетического. 4) Такая игра - без правил, без победителей и побежденных, без ответственности, игра невинности, бег по кругу, где сноровка и случай больше не