треугольника действительно больше 180°. В этом смысле задача решена. Вопрос лишь в том, допустимо ли рассматривать треугольники с изогнутыми сторонами.

— Разумеется, недопустимо, — заметил я несколько раздраженно. — Ведь если я не ошибаюсь, свет распространяется вдоль прямых.

— Вы совершенно нравы, — невозмутимо ответил Пункто. — Найдено решение лишь частичной проблемы, по оно может оказаться ложным.

Мы еще долго, на протяжении нескольких часов, обсуждали проблему, но безрезультатно. Прощаясь со мной, доктор Пункто сказал:

— Попробуем кратко сформулировать, как нам представляется положение вещей в данный момент. Из наблюдений нам известно, что сумма углов треугольников, измеренных на местности, не равна 180°, а больше 180°, причем невязка возрастает с увеличением размеров треугольника. У треугольников больших размеров она больше, чем у треугольников меньших размеров. Это во-первых. Во-вторых, можно предполагать, причем без особой уверенности, что подобная невязка встречается у треугольников, стороны которых не прямолинейны.

— Таков печальный итог наших размышлений, — подтвердил я.

— Итог не окончательный, — оптимистически заметил доктор Пункто.

— Что нам делать дальше? — спросил я. — Снова три дня предаваться размышлениям в ожидании, что кому-нибудь из нас придет в голову еще одна удачная идея? Окажется ли она удачнее первой?

— Да, такая перспектива не слишком привлекательна, — согласился доктор Пункто. — По-видимому, нам лучше поговорить с другими людьми и посмотреть, как они будут реагировать на идею о криволинейных треугольниках.

— Не обратиться ли за советом к моему внуку? — саркастически произнес я. — Мне кажется, что это лучший способ беспредельно раздуть тщеславие мальчишки.

— Я с большей охотой послушал бы, — сказал мой друг, — как реагируют на интересующую нас проблему ученые мужи, в особенности математики. Нельзя ли заинтересовать их? Мы располагаем фактами, требуется найти их научное объяснение.

— Или опровергнуть эти факты, — добавил я.

— Думаю, что опровергнуть их невозможно, — возразил доктор Пункто, и я не мог с ним не согласиться, поскольку результаты измерений действительно были безупречны.

Нам казалось, что лучше всего привлечь к интересующей нас проблеме внимание членов физико-математического факультета нашего университета. Я вызвался разыскать математиков и физиков, которые бы выразили готовность ознакомиться с проблемой.

20. НА ФАКУЛЬТЕТЕ

Вопреки ожиданиям я без труда справился со своей задачей. Я думал, что факультет поручит кому-нибудь из специалистов выслушать наши «свидетельские показания» по поводу необычайных событий, но все вышло иначе. Доктора Пункто и меня пригласили на собрание всего факультета, с тем чтобы мы могли изложить там свои взгляды.

В назначенное время мы в отличном расположении духа отправились на высокоторжественный форум, но, войдя в зал, почувствовали себя, как подсудимые перед началом разбирательства. Мы не могли отделаться от ощущения, что пригласили нас лишь для того, чтобы, пользуясь удобным случаем, пресечь распространяемую нами ересь, осудив ее в официальном решении общего собрания факультета. Это ощущение не покидало нас на протяжении всего заседания.

Сначала председатель предоставил слово доктору Пункто, назвав его «бывшим землемером». Доктор Пункто не без сарказма исправил ошибку председателя, сказав, что в настоящее время он имеет честь носить звание «бывшего главного землемера, эксдиректора Центральной Тригонометрической службы». Председательствующий реагировал на это замечание лишь краткой фразой «Вам слово», после чего доктор Пункто спокойно, строго придерживаясь фактов, рассказал обо всем, что произошло. Он сообщил собравшимся, что, согласно проведенным под его руководством измерениям, сумма углов треугольника оказалась больше 180°, причем отклонение от 180° тем больше, чем крупнее размеры треугольника. Никогда ранее, подчеркнул он, такое отклонение не наблюдалось, поскольку в прежние времена измерения производились на маленьких треугольниках и упомянутое выше отклонение превышало ошибки измерений. Доктор Пункто заявил, что отбрасывать серию произведенных под его руководством измерений на том лишь основании, что они приводят к парадоксальному выводу, не следует, ибо, по его мнению, необходимо попытаться найти научное объяснение столь странному явлению.

После того как доктор Пункто ясно и понятно изложил все имевшиеся в нашем распоряжении факты, слово попросил ученый-математик по имени Эрго. Путем весьма длинных и сложных рассуждений он доказал, причем вполне правильно, что наука, вообще говоря, призвана заниматься поиском объяснений экспериментально наблюдаемых фактов, а факты, о которых упоминал в своем выступлении доктор Пункто, такого рода, что науке следует незамедлительно отказаться от их рассмотрения. Сумма углов любого треугольника равна 180°, или двум прямым углам. Это доказали еще в глубокой древности, поэтому каждому ясно, что сумма углов треугольника не может принимать другое значение. А коль скоро некая серия измерений приводит к противоречию с одним из основных принципов науки, то эта серия измерений ошибочна. Ученые не обязаны заниматься поиском ошибок. Это должны сделать сами наблюдатели, допустившие вопиющую небрежность! Факультет не должен заниматься столь недостойным делом. Принять участие в подобной затее означало бы нанести ущерб престижу факультета.

Затем слово взял ученый-физик профессор Суппосо. Мы сразу же почувствовали, что выступает человек совсем другого склада. Профессор Суппосо все свое выступление построил на том, что в естественных науках, и в частности в физике, нередко приходится иметь дело со странными на первый взгляд результатами, которые при ближайшем рассмотрении оказываются верными. По его мнению, задача физики в том и состоит, чтобы отыскивать факты, кажущиеся невероятными, и затем пытаться найти им объяснение. Факты, приведенные доктором Пункто, весьма необычны, продолжал свои рассуждения профессор Суппосо, ибо они затрагивают основы основ математики, но тем не менее мы должны отнестись к ним с величайшей благосклонностью. Нам следует задать себе вопрос: можем ли мы представить себе треугольник, у которого сумма углов была бы больше 180°? Никогда еще нам не доводилось видеть такой треугольник ни в действительности, ни в воображении. Следовательно, чтобы обладать столь необычайными свойствами, сами треугольники должны быть весьма необычными. Может ли кто-нибудь из присутствующих опрокинуть существующие многократно проверенные научные представления и указать нам или начертить такой треугольник? Если никто не в состоянии сделать это, то я считаю вопрос исчерпанным. Однако если кому-нибудь все же удастся построить такой треугольник, то я с радостью приму участие в дальнейшем обсуждении.

Ободренный выступлением профессора Суппосо, я попросил слово и, когда мне его предоставили, произнес следующую речь:

— Уважаемые господа, высокоученые члены прославленного факультета! Позвольте мне высказать одно-единственное замечание по поводу выступления предыдущего оратора. Я в состоянии начертить треугольник, обладающий требуемым свойством. Предыдущий оратор уже отметил, что этот треугольник должен быть странным, необычным. Вот я и намереваюсь продемонстрировать вам треугольник не с прямолинейными, а с криволинейными сторонами, у которого сумма углов больше 180°.

На какое-то мгновение в зале воцарилась тишина. Пользуясь паузой, я начертил криволинейный треугольник.

Вы читаете Сферландия
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату