23° 27' к югу от экватора, - южным тропиком. Географические параллели, отстоящие на 23° 27' от полюсов Земли, называются полярными кругами северным (аа) и южным (dd). Пояс земной поверхности между тропиками (включая экватор) называется жарким или тропическим поясом. Пояс между северным тропиком и северным полярным кругом называется северным умеренным поясом, а между южным тропиком и южным полярным кругом - южным умеренным поясом. Области земной поверхности за полярными кругами называются северным холодным и южным холодным поясами. Большой полукруг PNOO'PS, проходящий через географические полюсы Земли и через точку О на ее поверхности, называется географическим меридианом точки О. Географический меридиан PNGG'PS, проходящий через Гринвичскую обсерваторию в Англии, считается нулевым или начальным меридианом. Нулевой меридиан и меридиан, отстоящий от нулевого на 180°, делят поверхность Земли на два полушария: восточное и западное. Прямая линия ТО, по которой направлена сила тяжести в данной точке Земли, называется отвесной или вертикальной линией. Положение точки О на земной поверхности однозначно определяется двумя географическими координатами: географической широтой j и географической долготой l. Географической широтой j точки О называется угол О’ТО между плоскостью земного экватора и отвесной линией, проходящей через точку О. Географические широты отсчитываются от экватора в пределах от 0° до +90° (северная широта), если точки лежат в северном полушарии Земли, и от 0° до -90° (южная широта), если точки лежат в южном полушарии. Географической долготой l точки О называется двугранный угол G'TO' между плоскостями начального меридиана и меридиана, проходящего через точку О. В Советском Союзе принято отсчитывать географическую долготу к востоку от начального меридиана, т.е. в сторону вращения Земли, в пределах от 0° до 360° (в градусной мере), или от 0h до 24h (в часовой мере). Географы, как правило, отсчитывают долготу в пределах от 0 до +180° к востоку (восточная долгота) и от 0 до -180° к западу (западная долгота). При решении многих астрономических задач можно считать, что Земля представляет собой однородный шар радиусом R = 6370 км. В этом случае направление отвесной линии в любой точке земной поверхности проходит через центр Земли и совпадает с ее радиусом, а географические меридианы и экватор будут окружностями одинакового радиуса, равного радиусу Земли. И тогда географическая широта какой-либо точки на Земле может быть измерена дугой меридиана от экватора до данной точки, а географическая долгота - дугой экватора от начального меридиана до меридиана, проходящего через данную точку. При решении задач, требующих более точных значений размеров и формы Земли, последняя принимается за эллипсоид вращения (сфероид) с неоднородным распределением масс. В этом случае отвесная линия не для всех точек земной поверхности будет проходить через центр сфероида Т (рис. 3), а будет пересекать плоскость земного экватора в некоторой другой точке T1, не совпадая с радиусом-вектором r, т.е. с прямой ТО, соединяющей центр сфероида с точкой О. Вследствие неравномерного распределения масс в области данной точки отвесная линия Т1O может также не совпадать и с нормалью Т2О к поверхности сфероида, т.е. с перпендикуляром к касательной плоскости в данной точке О Земли. По этому для каждой точки на поверхности Земли необходимо различать три вида географической широты: астрономическую, геоцентрическую и геодезическую.

Астрономической широтой j называется угол O T1 q между плоскостью земного экватора и отвесной линией в данной точке. Геоцентрической широтой j’ называется угол OTq между плоскостью земного экватора и радиусом-вектором данной точки О. Геодезической широтой (обозначения не имеет) называется угол O T2 q между плоскостью земного экватора и нормалью к сфероиду в данной точке. Непосредственно из астрономических наблюдений определяется только астрономическая широта j. Из геодезических и гравиметрических измерений определяется уклонение отвеса в данной точке, т.е. несовпадение отвесной линии с нормалью, которое дает возможность из астрономической широты j получить геодезическую. Уклонение отвеса, как правило, меньше 3' (исключая аномальные места), и в астрономических задачах ими пренебрегают и не делают различия между астрономической и геодезической широтой. Геоцентрическая широта j' вычисляется по формулам аналитической геометрии, связывающим ее с астрономической (точнее, геодезической) широтой. Разность между геоцентрической и астрономической широтой не превышает 12'; на географических полюсах и на экваторе Земли она равна нулю.

§ 129. Общие сведения

Вокруг Солнца движется множество тел, весьма различных но своим характеристикам. Кроме планет, в состав Солнечной системы входят их спутники, астероиды (малые планеты), кометы, метеорные потоки, метеорные тела, межпланетный газ. Планеты Меркурий, Венера, Марс, Юпитер и Сатурн были известны в древности. Уран открыт В. Гершелем в 1781 г. В 1846 г. открыта 8-я планета, Нептун (см. § 57). В 1930 г. американский астроном К. Томбо нашел на негативах медленно движущийся звездообразный объект 15m, который оказался новой, девятой планетой. Ее назвали Плутоном. Томбо в течение многих лет продолжал поиски возможных занептунных планет. Он установил, что в поясе ±7°,5 от эклиптики за орбитой Нептуна нет каких-либо других планет ярче 18m. Спутник Земли Луна - наиболее заметный небесный объект после Солнца. Галилей обнаружил, что вокруг Юпитера также движутся спутники. Впоследствии спутники были открыты у Сатурна, Марса, Урана и Нептуна. Поиски и открытия спутников продолжаются до самого последнего времени. Открытие новых астероидов и комет происходит почти каждый год. Планеты Меркурий, Венера, Земля и Марс по своим физическим характеристикам заметно отличаются от Юпитера, Сатурна, Урана и Нептуна. Меркурий, Венера, Марс и Земля объединяются в одну группу планет типа Земли. Юпитер, Сатурн, Уран и Нептун в другую - группу планет типа Юпитера или планет-гигантов. Наши представления о планетах-гигантах гораздо менее определенны, так как мы не можем пользоваться аналогией с Землей при анализе наблюдений. На дисках Марса, Юпитера и Сатурна заметно множество интересных деталей. Одни из них принадлежат поверхности планет, другие - их атмосфере (облачные образования). В прошлом наблюдениям этих деталей придавалось большое значение, так как они давали единственный способ хотя бы что-то узнать о природе планет. Однако атмосферное дрожание не позволяет при наблюдениях с Земли безгранично улучшать качество изображения даже при использовании самых мощных телескопов. Предел (угловое разрешение 0',2-0',3) был достигнут уже в начале нашего столетия, и сейчас наблюдения деталей на дисках планет ведутся только для регистрации их изменений. Чтобы обнаружить новые детали, более тонкие, чем удавалось раньше, планеты фотографируются с помощью фототелевизионных камер, установленных на борту космических аппаратов. На таких изображениях видны детали в десятки и сотни раз меньшие, чем можно различить с Земли (см. § 134, 135, 136 и 137). Большую роль в изучении поверхности и атмосферы планет играют астрофизические методы спектроскопия и фотометрия в различных диапазонах, включая ультрафиолетовую и инфракрасную области, а также радиоастрономия. При этом измерения проводятся как с помощью наземных телескопов, так и приборов, установленных на борту пролетных и орбитальных автоматических межпланетных станций (см. § 115). В последнем случае имеется возможность изучать планеты гораздо более детально. Спускаемые аппараты позволяют проводить прямые исследования физико- химических свойств атмосферы и поверхности. На Луне выполнялись исследования с помощью сложных подвижных автоматов ('Луноходы') и непосредственно астронавтами, доставлявшимися на ее поверхность. В результате полетов советских и американских АМС к планетам Солнечной системы и к Луне наши знания о них в течение последних десяти лет существенно расширились. В особенности это касается Венеры и Марса, исследования которых с помощью космических аппаратов проводились многократно и имеют характер последовательно развивающейся длительной программы. Полеты космических аппаратов стали сейчас главным направлением планетных исследований. Однако наземные наблюдения планет еще долгое время будут иметь важное значение по двум причинам: 1) на космические аппараты трудно установить очень большие приборы - такие, как радиолокационные антенны и спектрографы высокой разрешающей силы; 2) космические аппараты пока не позволяют проводить достаточно длительного слежения за планетами, необходимого для изучения всякого рода изменений (сезонные изменения на Марсе, движения облаков на Юпитере и т.д.). Наземные астрономические обсерватории еще долгие годы будут наблюдать планеты и получать интересные данные о них. Но планетные исследования в целом уже не являются частью астрофизики, как это было 10-15 лет назад. Большой вклад в них вносят теперь геофизика, геохимия, геология, и на стыке этих наук с астрономией на наших глазах рождается новая область науки или даже целая ветвь связанных между собой наук, занимающихся изучением планет (физика планет, планетохимия, планетология).

§ 130. Планета Земля

Мы знаем о Земле намного больше, чем о других планетах Солнечной системы. Поэтому прежде чем

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×