А на производстве в дело шла практическая сметка, опыт да подгонка по месту. На кораблях - именно эта машина сделала Европейскую цивилизацию хозяйкой планеты - пушечные порты: без орудий и опытных канониров ходить в Южные моря малоразумно и нерентабельно, нравы там и раньше были такие же, как ныне у Сомали, только встарь деревянные суда водили стальные парни - рубились после спуска на воду. Принято считать, что расчеты, позволившие прорубить порты до спуска на воду, впервые произвел в 1666 году английский корабел Энтони Дин (Anthony Dean) при строительстве 64-х пушечника HMS Rupert, о котором рассказано в 'Дневниках…' британского царедворца Пипса (Дин связан и с историей нашей страны - он был наставником Петра Великого в корабельном ремесле). Но - тут были использованы расчеты. Модели давали лишь наглядное представление о создаваемой машине.
Но, несмотря на достижения математики в XIX веке, когда был сформирован классический анализ и выведены уравнения математической физики, решить такую актуальную задачу, как расчет сопротивления воды равномерно движущемуся (о переходных процессах речь и не шла!) судну, было невозможно. Для этого пришлось прибегнуть к моделированию. Моделированию натурному, физическому. В Опытовых бассейнах.
Опытовые бассейны были передовыми по тем временам научными учреждениями, в которых были и бассейны как таковые. В них опускалась модель, воспроизводящая подводную часть корабля. Модель буксировалась с той или иной скоростью. Динамометр определял силу, необходимую для буксировки. Далее данные переводились на суда реальных размеров. Для этого использовались сначала экспериментальные коэффициенты, потом было создано учение о так называемых критериях подобия, Фруда, Рейнольдса, Прандтля...
Интересно, что, казалось бы, частная техническая задача - определение сопротивления судов - решалась на сугубо государственном уровне. Опытовые бассейны были по преимуществу правительственными. Первый был создан в Англии в 1870-м году. Французы проводили испытания в Бресте. Существовало и голландское учреждение. Россия обзавелась Опытовым бассейном в 1891 году. Тогда в мире шел переход артиллерии на бездымные пороха. У Морского министерства Российской империи образовалась 'остаточная сумма' в полтора миллиона рублей. Ландо и карет на нее покупать не стали, адмиральских дач не строили. Управляющий Морским министерством адмирал Чихачев и главный инспектор морской артиллерии контр-адмирал Макаров предложили эти деньги Менделееву для изыскания способа изготовления бездымного пороха.
Дмитрий Иванович решил проблему, затратив на лабораторные нужды всего полмиллиона рублей - им был создан пироколлодий, пироксилиновый порох, пригодный и для стрелкового оружия, и для артиллерии. А на оставшийся миллион предложил организовать для российского флота Опытовый бассейн, снабженный передовыми по тем временам измерительными и регистрирующими приборами (в их числе были и тогдашние вычислительные машины - логарифмические цилиндры). Тогда же Опытовым бассейном обзавелась и Италия, позже - Германия и США. Бахвалились ли тогдашние главы государств Опытовыми бассейнами, как ныне суперкомпьютерами, неясно…
Так вернемся к достижениям 2010 года. Сегодня за физическое моделирование взялись не инженеры, но физики. У них появились 'квантовые симуляторы', системы, позволяющие решать сложные задачи, связанные с решетками кристаллов. Ранее, пытаясь проинтерпретировать тот или иной экспериментальный результат, теоретик брал трехмерное множество точек, в которых находятся взаимодействующие между собой заряженные частицы, и формировал так называемый гамильтониан (функция такая…) для этих электромагнитных взаимодействий. Гамильтониан же решается не всегда (или крайне редко).
Так вот - в прошлом году ряду групп физиков пришла в голову идея воспользоваться моделированием. Ионы кристалла заменили пятнами лазерного света. Попавшие в них атомы изобразили взаимодействующие электроны. Потом система настраивалась под тот или иной гамильтониан, и - надо садиться и ждать, как само собой сформируется решение. Пока, правда, такие квантовые симуляторы использовали только для поверки результатов ранее решенных задач.
И речь, скорее, идет об аналоговом моделировании. Ну, когда-то динамические процессы (в механических системах, в гидравлических, тепловых…) моделировались электрическими токами и напряжениями в аналоговых вычислительных машинах, где операционные усилители были обвешаны цепочками емкостей и резисторов. Сейчас квантовомеханические процессы взаимодействия электронов и ионов моделируются по аналогии взаимодействием лазерных лучей и атомов. Но - самое главное и почти волшебное - 'квантовый' характер взаимодействия сохраняется.
И самый главный вывод, который можно сделать: на новом этапе развития технологии произошел возврат к приемам, применявшимся в прошлом. Как Опытовые бассейны позволили решить задачи, которые были 'не по зубам' классическому анализу, так и квантовые симуляторы возможно позволят решать те задачи, перед которыми пасует нынешняя вычислительная математика и техника. Спираль, о которой любили говорить и гегельянцы, и марксисты!
Но и 'традиционные' вычислители внесли в минувшем году свой вклад в науку, а именно - в молекулярную биологию. Дело в том, что белки, состоящие из большого количества аминокислот, могут сворачиваться уж очень разнообразными способами, порождающими 'комбинаторные взрывы' (не в моделях, или в вычислительных методах, а в самих процессах). А компьютер из 512 узлов сумел продраться сквозь эти процессы - это позволило смоделировать поведение помещенного в воду белка, его сворачивание-разворачивание, на отрезке времени в одну миллисекунду, что позволило моделировать процессов на новом уровне.
Чипсеты, используемые в современных ноутбуках
Автор: Олег Нечай
<p>Наборы системной логики для ноутбуков обычно не представляют большого интереса для конечного потребителя: при покупке портативных компьютеров основное внимание уделяется процессору, а выбор совместимого набора микросхем остаётся за производителем. К тому же в силу различных причин далеко не все возможности чипсета всегда и в полной мере используются конструкторами ноутбуков. Например, в подавляющем большинстве портативных машин не задействована поддержка RAID-массивов - просто в силу того, что в них устанавливается один жёсткий диск. Тем не менее полезно иметь представление о возможностях мобильной логики, по которым они вплотную приближаются к десктопным версиям.</p>
<h2>AMD</h2>
<p>Компания AMD выпускает единственный набор системной логики для мобильных процессоров последнего поколения, входящих в состав платформ Danube для массовых ноутбуков и Nile (AMD Ultrathin Platform) для ультратонких лэптопов, - AMD M880G. Как утверждают разработчики, этот чипсет на 20-40 процентов экономичнее предыдущей модели M780G.</p>
<p>Набор микросхем AMD M880G оснащается интегрированным графическим ядром RV620, представляющим собой модификацию дискретного чипа предыдущего поколения Mobility Radeon HD 4250. Это графика начального уровня, включающая в себя 40 универсальных процессоров (8х5), четыре текстурных блока и четыре блока растеризации. Ядро поддерживает аппаратное ускорение видео высокой чёткости 1080p (при помощи универсального видеодекодера UVD), программные интерфейсы DirectX 10.1 и OpenGL 2.0 и может использовать в качестве кадрового буфера до 512 Мбайт системной памяти DDR2 и DDR3. В чипе также реализованы технологии энергосбережения ATI PowerPlay 10, ATI PowerXpress 2.5 и цифровой аудиовидеоинтерфейс HDMI.</p>
<p>В паре с AMD M880G работает "южный мост" SB820M, включающий в себя контроллер SATA на шесть портов (включая eSATA) с возможностью организации RAID-массивов, контроллер USB 2.0 c поддержкой 12 портов и контроллер USB 1.0 на два порта.</p>