следует провал, потом опять всплеск, опять провал… и все это в зависимости от характера «интерференции» гребней и впадин», т. е. в зависимости от наложения волн.

И снова и снова г-н Фейнман обращает наше внимание на то, что если волны поочередно распространяются только через одно из открытых отверстий во втором экране, то кривые и l2, характеризующие волнение, имеют такой же вид, как и кривые N1, и N2, характеризующие количество пуль, пролетевших через каждое из двух отверстий. Но кривая l12 (суммарная) резко отличается от суммарной кривой N12 Получается, что l12 ≠ l1 + l2 (присутствие интерференции).

Наконец, Фейнман рассказывает о реальном эксперименте: «В качестве источников электронов возьмем накаленную нить, в качестве экранов — вольфрамовые пластинки с отверстиями, а в качестве детектора — любую электрическую систему с чувствительностью, достаточной… чтобы зарегистрировать заряд, приносимый электроном». Фейнман обращает внимание на то, что электроны излучаются поштучно (дискретно), как пули. И кривые, которые характеризуют вероятность попадания электронов через каждое одно из двух отверстий, ничем не отличаются от кривых в опыте с пулями, т. е. тут электроны ведут себя как корпускулы (N1 и N2).

Наконец, соответствующим образом подготовив нас, выдающийся физик констатирует: «Тем не менее, если открыть оба отверстия, мы не получим суммы N1, + N2 так что интерференция действительно есть (N1 + N2 ≠ N12)».

Р. Фейнман заключает: «Итак, электроны попадают в детектор порциями, как если бы это были частицы, но вероятность попадания этих частиц при двух открытых отверстиях определяется по тем же законам, по каким определяется интенсивность волнения воды. Именно в этом смысле можно говорить, что с одной точки зрения электрон ведет себя как частица, а с другой… — как волна, он ухитряется одновременно быть двумя совершенно разными понятиями».

Так и не сняв покров тайны с природы, г-н Фейнман ставит скромную точку: «Вот и все, что можно сказать по этому поводу».

Впрочем, чуть раньше он предостерегает обывателей от попытки чрезмерно суетиться. «Кажется, если подумать хорошенько, всегда можно найти какое-то объяснение: например, электроны могут возвращаться обратно через те же отверстия, а затем проходить через них еще раз… или возникает возможность расщепления электрона на два пролетающих через разные отверстия, или что-нибудь в этом роде, как-то объясняющее это явление. Но пока еще никому не удалось придумать удовлетворительное объяснение такого рода…»

И передо мной возникает проблема, так сказать, «быть или не быть». Не претендуя, естественно, на истину в последней инстанции, более того, не надеясь на особо удовлетворительное объяснение, я все-таки попытаюсь дать объяснение этому парадоксальному явлению природы с позиции гипотезы локально- когерентного времени.

Как уже отмечалось, все объекты Вселенной, взаимодействуя, обмениваются энергией и массой и поэтому поглощают или излучают псевдопотоки времени. При этом любое взаимодействие на уровне элементарных частиц приводит к изменению собственного времени частиц. Частицы способны существовать с собственным временем, отличным от квазикогерентного времени системы, в которой они находятся.

По мнению американского физика Г. Степпа, элементарные частицы, по существу, — «это среда, распространяющаяся вовне на другие объекты». Вслед за В. Олейником можно утверждать, что движущийся электрон — это сгусток заряженной материи, имеющий торсионную компоненту поля, постоянно связанную с электроном.

Что происходит с электронами в эксперименте, о котором поведал нам Фейнман? Возбужденные электроны генерируются нитью накаливания и пролетают пространство от источника до второй вольфрамовой пластинки с двумя отверстиями через среду, наполненную частицами, ядрами, атомами и молекулами, которые находятся в состоянии покоя, т. е. в состоянии, в котором они характеризуются массой покоя и низшими уровнями энергии.

Далее, электроны, поскольку они «вырываются» из нити накаливания, отличаются от «спокойных» электронов тем, что они возбуждены нагревом. Они должны характеризоваться более высокой внутренней энергией, и это должно было бы повысить темп их собственного времени. Однако, одновременно с этим, «вырванные» из нити накаливания электроны обладают повышенной кинетической энергией и, следовательно, повышенной (в соответствии с теорией относительности) полной (релятивистской) массой. Это должно было бы понизить их темп собственного времени.

В зависимости оттого, какой из этих двух факторов, изменяющих время электронов, более весом, на практике темп собственного времени электронов в этом эксперименте будет изменяться либо в сторону увеличения, либо в сторону уменьшения в сравнении с темпом времени спокойных частиц. Но, в общем случае, собственное время возбужденных электронов всегда будет отличаться от квазикогерентного времени среды, т. е. от собственного времени частиц, находящихся между двумя пластинами.

Так как за время пролета между пластинами в полете находится не один электрон, а множество, или, по крайней мере, несколько, то практически мы имеем дело с иновременным потоком в форме цилиндра или, точнее (из-за рассеяния), усеченного конуса.

Каждый электрон, имеющий свое время, отличное от времени локальности между источником и пластиной с двумя отверстиями, в процессе полета воздействует на квазикогерентное время этой локальности через его носителей — через микрообъекты, находящиеся в состоянии относительного покоя. При этом в непосредственной близости от каждого летящего электрона, в зоне его контакта с иновременной средой это воздействие максимально (вероятно, перед электроном — крутое нарастание, за электроном — спад).

В зоне контакта разновременных объектов создается своеобразное возмущение среды, которое, безусловно, носит характер энергетического взаимодействия. С механической точки зрения для летящего электрона контакт с каждой иновременной частицей — это сопротивление его движению.

Какой характер этого взаимодействия? Сказать что-либо определенное до экспериментального подтверждения особенностей взаимодействия разновременных микрообъектов было бы, безусловно, преждевременным, но, следуя логике нашей гипотезы, можно сделать допущения: либо контакт электрона и некой частицы — объектов, имеющих резко отличное время, порождает (вследствие перераспределения энергии) рой виртуальных частиц, либо в зоне контакта возникает микролокальное искривление пространства-времени, либо и то, и другое.

Но в любом случае возникшее в зоне контакта возмущение порождает импульс, который распространяется в глубь иновременной среды с неизбежным затуханием своей интенсивности.

В рассмотренном эксперименте мы, практически, имеем дело не с одним электроном, а с системой электронов, взаимодействующих с системой «покоящихся» микрообъектов.

В соответствии с основным уравнением квантовой электродинамики — уравнением Шредингера для системы частиц — каждой системе частиц «отвечает волна, являющаяся наложением волн отдельных частиц».

Вернемся к эксперименту Фейнмана. В той части лабораторной установки, где электроны летят от источника до пластинки с двумя отверстиями, у нас есть один усеченный конус (рис. 3). Внутри конуса, насыщенного электронами, импульсы возмущения от контактов с иновременными частицами взаимно компенсируются, от поверхности же конуса импульсы уходят вовне без компенсации…

Важно, что в этом случае электроны внутри конуса, не испытывая возмущающего импульса, летят как корпускулы (как пули).

Если в пластине открыто одно из двух отверстий, то электроны, пролетевшие через него, образуют новый усеченный конус, в котором электроны также (и по тем же причинам, что и в первом конусе) будут вести себя, как корпускулы, образуя кривую либо N1 либо N2. О таком результате и поведал нам г-н Фейнман.

Рис. 3. Эксперимент Фейнмана. Электроны проходят через одно отверстие

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату