приостанавливать действие закона сохранения энергии на очень короткое время. В течение этого промежутка времени энергия может быть взята «взаймы» на различные цели, в том числе нарождение частиц. Разумеется… частицы будут коротко живущие… Эти частицы-призраки нельзя наблюдать, хотя они могут оставлять следы своего кратковременного существования… Реальную частицу, например электрон, всегда необходимо рассматривать на фоне этой непрерывной активности…» {15}
После этих слов, а главное, после того, как было продекларировано существование в природе микролокальных искривлений пространства-времени, вернемся вновь к парадоксу Эйнштейна — Подольского — Розена.
По нашему мнению, происходит следующее: в момент, когда в эксперименте Аспека осуществляется фиксация параметров фотонов, т. е. у первой частицы определяется импульс, а у второй — положение, обе эти частицы получают энергию от взаимодействия с лабораторным прибором. В результате фотоны изменяют свою энергию-массу, изменяют свое собственное время, по величине и направлению изменяются импульсы, воздействующие на фотоны. Все эти «потрясения» приводят к микролокальному искривлению пространства-времени в локальности фотонов и, следовательно, к изменению гравитации в этой локальности. Местное искривление пространства-времени отрывается от точечного источника и, возможно, в виде гравитационной волны перемещается в пространстве. Изменяется само пространство-время, в котором теперь движутся носители взаимодействия. Часы в лаборатории фиксируют превышение скорости света. Относительно же нового, изменившегося пространства-времени скорость взаимодействия фотонов может и не превышать скорость света. Приборы в лаборатории не «чувствуют» микролокального искривления пространства и времени, а фотоны на это изменение реагируют, так как в их локальности изменяется метрика пространства. Что касается самого факта сверхсветовой скорости, то вот, что пишет О. Зайцев: «Скорость передачи энергии ограничена скоростью света. Но гравитационное поле не является переносчиком энергии, так как лишено массы. Поэтому со стороны постньютоновских (релятивистских. — А.Б.) принципов нет запрета на возможность мгновенного распространения гравитации (гравитация сама создает пространство, поэтому здесь слово «распространяться», уже подразумевающее пространство, не вполне корректно)» {44}. Если в этой цитате заменить слово «мгновенного» на «сверхсветовой скорости», то нас такая точка зрения должна полностью устраивать. Сам О. Зайцев там же пишет: «Мгновенная передача информации невозможна даже теоретически, так как осуществить информационные изменения гравитационного потенциала и уловить эти изменения можно только при помощи масс» {44}.
Так кто же прав в этом затянувшемся споре вокруг парадокса ЭПР? Эйнштейн прав, потому что строгие причинно-следственные связи существуют и в квантовом мире, а Бор — потому, что оказывается возможным что-то вроде предсказанных им «нелокальных» эффектов взаимодействия.
Но, кажется все-таки, что более прав Эйнштейн: за «кривым» фасадом квантовой механики просматривается хоть и величественное, но нормальное здание физики микромира, и, может быть, все-таки в фундаменте этого здания заложен здравый смысл.
Вероятно, и другие странности квантовой механики можно объяснить взаимодействием разновременных частиц, например так называемые пороговые парадоксы, туннельные эффекты, а может быть, и отдельные проявления сверхпроводимости.
Позволим себе сформулировать осторожные, но, тем не менее, обобщающие допущения.
Природа квантовой неопределенности обусловлена явлением динамического изменения темпов собственного времени элементарных частиц при их взаимодействии (вплоть до микролокального искривления пространства-времени) и, следовательно, сдвигами моментов времени, в частности, относительно лаборатории как системы отсчета.
Причина классического дуализма (корпускула — волна) у субъектов микромира обусловлена взаимодействием иновременных частиц. То есть тем, что движущиеся «энергичные» частицы взаимодействуют с «покоящимися» частицами, обладающими иным собственным временем.
А в частности, такое объяснение делает понятным и причину, по которой сталкивающиеся с преградой частицы — это всегда корпускулы, которые можно подсчитать (фотоэффект).
Предложенное понимание природы квантовой неопределенности позволяет превратить соотношение неопределенности из явления, непонятно чем вызванного, в неопределенные отношения, вызванные понятными причинами.
Для того чтобы эти отношения стали количественно определенными, необходимо научиться определять изменение внутренней энергии и скорости взаимодействующих частиц.
Завершая подраздел, я с большой долей пессимизма задаю себе вопрос: помогут ли эти мои, по необходимости, слишком умозрительные рассуждения вернуть квантовой механике здравый смысл? И с оптимизмом отвечаю: весьма сомнительно. Но, может быть, они породят плодотворное возмущение…
3.2. Космология и астрофизика: альтернативный взгляд
Сегодня общепринятым считается космологический принцип, согласно которому Вселенная не статична, но однородна и изотропна в любую космологическую эпоху.
К такому представлению ученые пришли не сразу. Еще в 1917 г. Эйнштейн полагал, что Вселенная статична, однородна и изотропна. Вот что пишет проф. Джайант Нарликар из индийского Тата-института фундаментальных исследований в Бомбее: «Смысл этих терминов легко пояснить на примере. Представим себе, что галактики — это своеобразные наблюдательные пункты… однородность Вселенной означает, что, из какой бы галактики мы ни смотрели на Вселенную, она одинаково выглядит. Изотропия означает, что если смотреть на Вселенную из произвольной галактики, то в больших масштабах она одинаково выглядит во всех направлениях (т. е. обладает одинаковыми свойствами. — А.Б.).
И, наконец, в статичной Вселенной отсутствуют крупномасштабные систематические движения ее составных единиц — галактик. Иными словами, Вселенная выглядит одинаково в любой момент времени… Обратите внимание, что первое свойство согласуется с идеей Коперника: ни одна область во Вселенной не имеет выделенного положения. Второе свойство делает равноправными все направления, а третье — все моменты времени (выделено мною. — А.Б.)» {50}.
Проблема, однако, заключалась в том, что Эйнштейну никак не удавалось решить свои знаменитые уравнения тяготения так, чтобы решение соответствовало его космологической модели. «И тогда он видоизменил уравнения, предположив, что в природе существует еще один новый тип сил отталкивания» между любыми двумя массами…
…Эйнштейн решил уравнения, показав, «каким образом распределение материи определяет характерные черты неевклидовой геометрии Вселенной».
Но оказалось, что привлечение в уравнения Эйнштейна дополнительных сил отталкивания позволяет иметь и другие решения его уравнений. В том же 1917 г. нидерландский астроном де Ситтер предложил свое решение и свою модель пустой, однородной и изотропной, но уже расширяющейся (не стационарной) Вселенной. В 1924 г. советский математик А А. Фридман предлагает свою модель: Вселенную, заполненную материей, однородную и изотропную. Решение Фридмана (как и Ситтера) показало, что Вселенная расширяется. Точнее, они создали модели, в которых Вселенная расширяется.
Идея расширяющейся Вселенной необыкновенно быстро стала господствующей. Этому способствовали несколько обстоятельств. Во-первых, сам Эйнштейн отказался от своей модели в пользу нестатичной модели Фридмана, а во-вторых, этому помогло привлечение эффекта Доплера[27] для объяснения красного смещения в спектрах излучения далеких небесных объектов. Этот эффект как бы неопровержимо подтверждал, что галактики разлетаются друг от друга, при этом вскоре было установлено, что скорость удаления галактик тем больше, чем дальше они от нас находятся (Хаббл, 1929).
Итак, сегодня общепринятым считается, что Вселенная не статична (расширяется), однородно заполнена веществом и проявляет одинаковые свойства во всех направлениях.