относительное увеличение плотности вещества во Вселенной.
Итак, не только Вселенная в целом снижает темп времени, каждый ее субъект также неуклонно снижает темп собственного времени (что не исключает в отдельные (частные) периоды жизни каждого объекта развитие противоположной тенденции). Получается, что фотон покидает излучающий объект при более ускоренном времени, а мы регистрируем его во Вселенной, темп времени которой относительно замедлен. За многие миллионы лет полета в гравитационном поле Вселенной полная энергия фотонов и темп их собственного времени понижаются. Происходит своеобразная дистрофия (старение) фотонов. В великолепной монографии В. Бриля {37} утверждается: «На пути… до наблюдателя обычные фотоны в результате «старения» (т. е. диссипации их энергии на фоновых частицах) постепенно превращаются сначала в низкоэнергичные «реликтовые» фотоны, а потом и сами становятся виртуальными фоновыми частицами…»
Фотоны в процессе эволюции Вселенной становятся менее энергичными, и это соответствует фундаментальной тенденции снижения вселенского темпа времени.
Теперь, используя зависимость Планка Е = hv, где Е — энергия излучения, v — частота волны фотона, a h — постоянная Планка, видим, что при уменьшении энергии для того, чтобы сохранилась эта зависимость, должна уменьшиться частота. Но частота и длина волны связаны обратно пропорциональной зависимостью, а это значит, что при уменьшении частоты соответственно этому произойдет приращение длины волны.
То есть в спектре излучения таких волн будет наблюдаться Красное смещение.
Это новый тип красного смещения. Назреем его хроносомным, отметив тем самым его генетическую связь с неоднородным временем.
При этом приращение длины волны и темп времени тела, излучающего в различные космологические эпохи, связаны зависимостью где λ — длина волны излучения; Δλ, — приращение длины волны; tz, t — темпы времени Вселенной соответственно в прошлом и в настоящее время; n — величина, характеризующая собственный темп времени излучающего тела (в момент излучения) в сравнении с фоновым темпом времени, т. е. это отношение собственного времени излучающего тела к усредненному собственному времени той локальности Вселенной, в которой находится излучающее тело (n может быть больше или меньше единицы, а в частном случае — равным единице).
Если замедление вселенского темпа времени сосуществует с расширением Вселенной, то теперь при определении скорости и возраста разбегающихся галактик, удастся уменьшить определяемые величины за счет исключения влияния хроносомного красного смещения, а расстояния до галактик и других объектов и абсолютный возраст Вселенной придется сократить. Момент же Большого взрыва, соответственно, придется приблизить.
Претензии на новизну, следующие из декларации о том, что интенсивность темпа (хода) времени во Вселенной неуклонно понижается и что в связи с этим появляется хроносомное красное смещение, которым можно объяснить кажущееся удаление галактик, это, конечно, очень серьезно, чтобы не попытаться поискать дополнительные аргументы.
…И они есть!
Но в начале немного истории. И во времена Аристотеля, и в эпоху миропонимания Ньютона Вселенная всегда считалась стационарной. Следовал такой концепции и Эйнштейн. Через 200 лет после Ньютона, создавая свою теорию тяготения, он мучился вопросом: каким образом Вселенной удается избежать коллапса, почему под действием всемирного тяготения Вселенная вместо того, чтобы сжаться, остается стационарной? Над этим, конечно, задумывались и раньше.[29]
Еще Ньютон понимал, сколь сложна проблема устойчивости Вселенной. Его рассуждения по этому поводу очень интересны. Вот как они выглядят в пересказе Девиса; «Если бы Вселенная коллапсировала под действием собственной гравитации, каждая звезда «падала» бы в направлении центра скопления звезд. Предположим, однако, что Вселенная бесконечна и звезды распределены в среднем равномерно… В этом случае отсутствовал бы общий центр… Любая звезда испытывала бы воздействие гравитационного притяжения от всех своих соседей, но вследствие усреднения этих воздействий по различным направлениям не возникло бы никакой результирующей силы…» {15}. Таким образом, по мнению Ньютона, именно по этой причине Вселенная не коллапсирует (обратим внимание, что этот подход Ньютона, в какой-то мере, предшествует принципу Маха, так как ставит поведение единичного субъекта Вселенной в зависимость от состояния и поведения всей остальной Вселенной).
Эйнштейна, однако, такие рассуждения Ньютона не удовлетворили. Он считал, что во Вселенной должны быть наряду с гравитацией и космические силы отталкивания, которые, в конце концов, и не позволяют сжиматься Вселенной. Именно по этой причине Эйнштейн и ввел в свое уравнение гравитационного поля дополнительный член, который приводит к появлению силы, обладающей нужными свойствами. Только привлечение дополнительных сил отталкивания (антигравитации) и позволило Эйнштейну создать свою модель стационарной Вселенной. Был ли сам Эйнштейн доволен таким решением проблемы устойчивости Вселенной? Если и да, то очень короткое время. Ведь никто никогда никаких сил отталкивания не наблюдал и не фиксировал. Пришлось допустить, что они очень слабы и по этой причине и на Земле, и в солнечной системе, даже в нашей Галактике, их не удается обнаружить. Для обоснования этого допущения пришлось, в свою очередь, допустить, что эти силы всемирного отталкивания обладают совершенно специфическими свойствами — они усиливаются с увеличением расстояния. Ничего подобного никто и никогда во Вселенной не предполагал — все силы уменьшаются с увеличением расстояния (и силы гравитации, и электромагнитные). Вы представляете, как, очевидно, мучился Эйнштейн с его великолепной научной интуицией, изначально чувствуя некоторую натяжку. Между тем, общая теория относительности была опубликована, и ее начали испытывать на прочность специалисты.
И вот тут оказалось, что уравнения Эйнштейна (с теми силами отталкивания) могут быть решены без сил отталкивания, но для расширяющейся Вселенной. Итак, с разрывом лет в семь прозвучали два первых удара колокола — похоронного звона по модели стационарной Вселенной; сначала (1917) голландский астроном Вилем де Ситтер, а затем и советский математик Александр Фридман (1923–1924) теоретически показали, что Вселенная может расширяться, оставаясь при этом устойчивой под действием сил всемирного тяготения.
И Эйнштейн сдался, и в общем-то, без боя, ибо это, кроме всего прочего, принесло ему огромное облегчение: он смог наконец-то сбросить с себя огромную тяжесть и отказаться от им же придуманных, но внутренне никогда его не устраивавших космических сил отталкивания. Впоследствии Эйнштейн признался, что его гипотеза о силах отталкивания — это главная ошибка его жизни.
А когда в конце 20-х годов американские астрономы Эдвин Хаббл и его коллега Хьюмасон экспериментально (наблюдательно) подтвердили, что галактики удаляются от нас и друг от друга, последние сомнения стали быстро рассеиваться — модель расширяющейся Вселенной стала господствующей. С тех пор прошло 70 лет. Не смешно ли сегодня сомневаться? Может быть, смешно. Однако давайте посмотрим, на что опирается концепция нестационарной — расширяющейся Вселенной.
Открытие Хаббла случилось в самый подходящий момент — в нем остро нуждались и де Ситтер, и А. Фридман, и Эйнштейн, да в общем-то все, кого волновала проблема стабильности Вселенной. Ценность его в том, что расширение как бы удалось увидеть-пощупать. Ведь применив эффект Доплера к излучению космических объектов, Хаббл обнаружил (впрочем, он не был первым) красное смещение в спектрах их излучения и интерпретировал его (и тут он, пожалуй, был первым) как следствие удаления от нас галактик.
Короче говоря, уже «в начале 30-х годов теоретики и экспериментаторы смогли построить такие модели Вселенной, которые, с одной стороны, описываются решениями уравнений Эйнштейна, а с другой — согласуются с результатами Хаббла».
Вопрос о стабильности Вселенной был снят с повестки дня.
А все это вместе сегодня считается одним из величайших достижений науки XX века… Склонимся и