произвести перестановку посылок, обратив меньшую посылку чисто, а равным образом сделав чистое обращение в заключение.

Camestres:

A: все P суть M

E: ни одно S не есть M

E: ни одно S не есть P

Celarent:

Ни одно M не есть S

Все P суть M

Ни одно P не есть S

Ни одно S не есть P

Возьмём пример:

A: Все звёзды суть самосветящиеся тела

A: Ни одна планета не есть самосветящееся тело

E: Ни одна планета не есть звезда

->

E: Ни одно самосветящееся тело не есть планета

A: Все звёзды суть самосветящиеся тела

E: Ни одна планета не есть звезда

(после чистого обращения)

Reductio ad absurdum. Наконец, рассмотрим ещё один способ сведения, это именно сведение посредством reductio ad absurdum – приведение к нелепости; он применяется, как уже было сказано, во всех тех модусах, в которых есть буква k.

К таким модусам относятся Baroko и Bokardo. Буква B в начале обозначения показывает, что для сведения необходимо воспользоваться модусом Barbara. Этот способ называется reductio ad absurdum (сведение к нелепости) по следующей причине. Мы, имея две посылки, приходим к известному выводу. Кто- нибудь утверждает, что наш вывод неверен. Тогда наша задача заключается в том, чтобы показать нелепость этого утверждения. Для этого мы стараемся показать, что нельзя, признавая данные посылки, не признавать нашего заключения, или вывода.

Возьмём умозаключение по модусу Baroko.

A: Все P суть M.

O: Некоторые S не суть M.

O: Следовательно, некоторые S не суть P.

Будем отрицать справедливость заключения: «Некоторые S не суть P». Если мы не признаём истинным заключение, то мы должны признать истинность противоречащего ему суждения. Поэтому, если ложно, что «некоторые S не суть P», то должно быть истинным, что «все S суть P». Сделав принятое положение меньшей посылкой, как это показывает буква k, мы получаем следующий силлогизм по Barbara с P в качестве среднего термина:

Все P суть M.

Все S суть P.

Все S суть M.

Именно k показывает, что посылка, обозначение которой предшествует букве A, должна быть замещена положением, противоречащим заключению.

Глава XVI

Условные, разделительные и условно разделительные силлогизмы

Условные, или гипотетические, силлогизмы. До сих пор мы рассматривали силлогизм, в котором посылками служат категорические суждения, но мы видели, что кроме категорических суждений есть ещё условные и разделительные суждения. Поэтому могут быть такие силлогизмы, в посылки которых входят суждения условные или разделительные, или и те и другие. Как мы видели, схема условного суждения будет такова:

Если A есть B, то C есть D.

Первое суждение, как мы видели, называется «основанием», второе называется «следствием». Можно составить такой силлогизм, в котором одна из посылок будет условным суждением; тогда у нас получится условный силлогизм.

Есть два типа условных силлогизмов:

1. Modus ponens, или модус конструктивный.

Если A есть B, то C есть D.

A есть B.

Следовательно, C есть D.

Пример:

Если дождь идёт, то почва мокрая.

Дождь идёт

Следовательно, почва мокрая.

Этот тип умозаключения называется modus ponens, потому что в нём основание полагается, утверждается (от ponere – вставить); в нём в меньшей посылке содержится утверждение основания. Вследствие того, что утверждается основание, утверждается также и следствие, потому что в данном случае основание есть причина следствия. Второй тип условных силлогизмов называется:

2. Modus tollens, или модус деструктивный. Он называется modus tollens потому, что меньшая посылка содержит отрицание, и именно следствия (tollere – уничтожать).

Если A есть B, то C есть D.

C не есть D.

Следовательно, A не есть B,

Пример:

Если дождь идёт, то почва мокрая

Но почва не мокрая

Следовательно, дождь не идёт.

В этом силлогизме в меньшей посылке отрицается следствие, в силу чего в заключении отрицается основание.

Таким образом, получаем два типа условного силлогизма. Первый называется также модус конструктивный, потому что в нём получается утвердительное заключение (от construe – строю, созидаю), второй тип называется модус деструктивный, потому что в нём получается отрицательное заключение (от destruo – разрушаю).

Следует заметить, что в условных силлогизмах можно умозаключать только лишь от утверждения основания к утверждению следствия и от отрицания следствия к отрицанию основания, но нельзя умозаключать от утверждения следствия к утверждению основания и от отрицания основания к отрицанию следствия. Это оттого, что одно и то же действие может созидаться различными причинами. В самом деле, если я отрицаю, что данная причина произвела то или другое действие, то из этого не следует, что его не могла произвести какая-нибудь другая причина; если я утверждаю, что данное действие произошло, то это не значит, что оно порождено данной причиной, потому что могло быть множество других причин, которые могли его породить. Для пояснения этого возьмём следующий условный силлогизм:

Если кто-нибудь читает хорошие книги, то он приобретает познания.

N приобрёл познания.

Мы здесь утверждаем следствие. Можем ли мы утверждать основание? Следует ли отсюда, что N читал хорошие книги? Нет, так как он эти познания мог приобрести при помощи различных других способов,

Вы читаете Учебник логики
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату