тридцать восемь у него родился сын, умерший сорока двух лет, когда самому Диофанту стукнуло восемьдесят. Наконец, на восемьдесят четвёртом году великий грек ушёл из жизни. Его не стало (хотя это уже не вытекает из нашего уравнения) в III веке новой эры. Евклид и Аристотель жили и творили в III веке до новой эры. И несмотря на то, что биографии великих мыслителей разделяет более полутысячелетия, во времена Диофанта ещё не родилась алгебра — та самая, которая позволяет нам столь лихо расправляться с трудными арифметическими задачами.
Как ускорился прогресс, насколько богаче стали возможности математики, когда встала на ноги и окончательно утвердилась алгебра, сразу же обретшая права гражданства! А случилось это в эпоху Возрождения — через тысячи лет после появления геометрии и арифметики.
Что касается логики, тоже весьма почтенной старушки («Органон») Аристотеля создан примерно в одно время с «Началами» Евклида), то здесь алгебра не сразу получила признание. Символика и операции математической логики пришлись то ли не по вкусу, то ли не по зубам логикам середины XIX века. А кто осилил булеву алгебру, десятилетиями считали её занятным, однако никчёмным изобретением досужего ума. Положение изменилось лишь к концу XIX века, когда перед наукой во весь рост поднялась серьёзная задача — обосновать самые кардинальные идеи и понятия математики. Аристотелева логика, при всём её совершенстве, вынуждена была сложить оружие перед неодолимыми трудностями. Тут-то и пришлось идти на поклон к логике символической. И понятно почему.
В своё время, разбирая кипу откликов на статью «По следам логических катастроф», напечатанную в журнале «Техника — молодёжи», автор обнаружил массу опровержений всех знаменитых парадоксов. В том числе парадокса Сервантеса. Искренне сочувствуя бедняге Санчо, изо всех сил стараясь ему подсобить, читатели пускались на всевозможные казуистические ухищрения. Одни выискивали смысловые лазейки в формулировке закона. Другие в заявлении чудаковатого пришельца. Третьи — в процедуре исполнения приговора. Что ж, кое-кому это удавалось. Удавалось постольку, поскольку в статье фигурировала популярная версия парадокса со всеми атрибутами реальной житейской ситуации. Зато сформулированное в терминах математической логики с их однозначной трактовкой, не допускающей никаких двусмысленностей, противоречие предстало бы перед нами во всей его роковой, неумолимой, неизбежной, неуничтожимой сущности.
Разумеется, симпатии учёных притягивала и притягивает не только эта строгость и однозначность определений, скрывающаяся за символами математической логики. Сведя построение силлогизмов к буквенным преобразованиям, булева алгебра освободила человека от необходимости держать в голове содержание посылок и промежуточных умозаключений. Вся забота свелась к наблюдению за правильностью алгебраических выкладок, напоминающих решение системы уравнений, А такую, премудрость способен постигнуть даже школьник.
Да, далеко шагнули вперёд математика и логика со времён Зенона и Аристотеля. Появилась и успешно развивается теория доказательств — метаматематика. И тем не менее, несмотря ни на что, парадоксы с невозмутимостью Сфинкса, сквозь загадочно-насмешливую маску каменного колосса- продолжают взирать на все ухищрения логистов, как они тысячелетия назад смотрели на наивные потуги опровергателей. Есть ли выход из тупика? Если да, то где он? Неужели есть вещи, недоступные человеческому разуму?
Бессильная в своём могуществе, математическая логика в недоумении разводит руками.
«Ну и что? — пожмёт плечами читатель. — Разве из-за этих сугубо теоретических, лучше даже сказать, надматематических изъянов хуже действуют столь мощные практические инструменты, как, например, дифференциальное и интегральное исчисление? Или вы забыли, какие чудеса творит кибернетика? То ли будет впереди! А вы всё толкуете о каких-то там парадоксах…»
Спору нет, успехи современной математики грандиозны. Кибернетики — тоже. Электронные машины вторглись в заповедные области человеческого интеллекта… Нынче они навострились не только доказывать известные теоремы, но даже… формулировать новые!
Работая по программе, составленной американским учёным Ваном Хао, универсальная цифровая машина ИБМ-704 за восемь минут тридцать секунд доказала все триста пятьдесят теорем, что составляют целых девять глав в монографии Рассела и Уайтхеда «Основания математики»!
Этим дело не ограничилось. Ван Хао так запрограммировал машину, чтобы она не просто доказывала или опровергала математические предложения, заданные человеком, а сама занялась научным творчеством. И машина охотно принялась печатать одну за другой новые теоремы…
Так, может, эра машинного мышления знаменует собой начало полного раскрепощения математики от логических несуразностей?
Послушаем специалистов.
«Имеется ряд результатов математической логики, — говорит А. Тьюринг, автор книги «Может ли машина мыслить?», — которые можно использовать для того, чтобы показать наличие определённых ограничений возможностей машин..! Наиболее известный из этих результатов — теорема Гёделя… Существуют определённые вещи, которые эта машина не может выполнить. Если она устроена так, чтобы давать ответы на вопросы, то будут вопросы, на которые она или даст неверный ответ, или не сможет дать ответа вообще, сколько бы ни было ей предоставлено для этого времени».
А вот какого мнения придерживается «отец кибернетики» Норберт Винер: «Всякая логика ограничена вследствие ограничений человеческого разума, которые обнаруживаются при том виде его деятельности, который мы называем логическим мышлением. Например, в математике мы посвящаем много времени рассуждениям, включающим понятие бесконечности, но эти рассуждения и сопровождающие их доказательства в действительности не бесконечны. Всякое, допустимое доказательство содержит лишь конечное число шагов…
Доказательство есть логический процесс, который должен привести к определённому заключению через конечное число шагов. Напротив, логическая машина, действующая по определённым правилам, не обязательно должна прийти когда-либо к заключению. Она может продолжать проходить через различные шаги, никогда не останавливаясь; при этом она будет либо совершать последовательность действий всё увеличивающейся сложности, либо повторять один и тот же процесс, подобно вечному шаху в шахматной партии. Это действительно имеет место в случае некоторых парадоксов Кантора и Рассела».
Значит, и машины пасуют перед логическими парадоксами? Если бы только перед парадоксами…
Недавно вышла в свет прелюбопытнейшая книжица М. Таубе «Вычислительные машины и здравый смысл. Миф о думающих машинах». Там сказано: «В свете теоремы Гёделя о неполноте элементарной теории чисел существует бесконечное множество задач, которые принципиально неразрешимы этими машинами, как бы сложна ни была их конструкция и как бы быстро они ни работали. Очень может быть, что человеческий мозг — это тоже «машина» с присущими ей ограничениями и с неразрешимыми для неё математическими проблемами. Даже если это так, то человеческий мозг воплощает в себе систему операционных правил, значительно более могущественную, чем у мыслимых в настоящее время машин. Так что в ближайшем будущем не видно перспектив замены человеческого разума роботами».
Неужели и тут «движенья нет»?
Прежде чем окончательно, уяснить неутешительный вывод Таубе, давайте разберёмся, о какой ограниченности машины по сравнению с человеком твердят кибернетики.
Если верить историческому анекдоту, Архимед открыл свой знаменитый закон гидростатики нежданно-негаданно — лёжа в ванне. Взволнованный внезапно осенившей его идеей, учёный, забыв одеться, побежал по улицам Сиракуз с криком: «Эврика!»
Отголосок этого восклицания великого эллина через двадцать с лишним веков зазвучал в слове «эвристика». Таким термином современные учёные пользуются, когда говорят о характерных особенностях человеческого мышления.
Инженер денно и нощно бьётся над какой-нибудь технической головоломкой. Он уже изрисовал чертежами ворох бумаги, он перечитал груду книг, он прибегал и к моделям и к расчётам. Увы, нужная конструкция «не вытанцовывается». Проходяг часы, дни, недели… Мысль зашла в тупик. И отвязаться-то от идеи не отвяжешься: она неотступно стоит перед внутренним оком изобретателя. Вдруг… «Эврика!» И на бумагу ложится выстраданная бессонными ночами долгожданная находка. «Внезапное озарение», — говорит инженер. «Эвристическая деятельность», — говорят учёные. Технология этого мучительного и радостного творческого процесса — величайшая загадка природы.
К пионерам науки об эвристике относят Декарта и Лейбница, великих математиков и философов