революционного воздействия теории Эйнштейна. Хотя это изменение более тонкое, нежели переход от геоцентризма к гелиоцентризму, от флогистона к кислороду или от корпускул к волнам, полученное в результате его концептуальное преобразование имеет не менее решающее значение для разрушения ранее установленной парадигмы. Мы даже можем увидеть в концептуальном преобразовании прототип революционной переориентации в науках. Именно потому, что такое преобразование не включает введения дополнительных объектов или понятий, переход от ньютоновской к эйнштейновской механике иллюстрирует с полной ясностью научную революцию как смену понятийной сетки, через которую учёные рассматривали мир.
Этих замечаний будет достаточно, чтобы доказать тезис, который в ином философском климате мог бы быть принят без доказательств. По крайней мере для учёных большинство очевидных различий между отбрасываемой научной теорией и её преемницей вполне реально. Хотя устаревшую теорию всегда можно рассматривать как частный случай её современного преемника, она должна быть преобразована для этой цели. Преобразование же является тем, что может осуществляться с использованием преимуществ ретроспективной оценки — отчётливо выраженного применения более современной теории. Кроме того, даже если это преобразование было задумано для интерпретации старой теории, результатом его применения должна быть теория, ограниченная до такой степени, что она может только переформулировать то, что уже известно. Вследствие своей экономичности эта переформулировка теории полезна, но она не может быть достаточной для того, чтобы направлять исследование.
Примем, таким образом, теперь без доказательства, что различия между следующими друг за другом парадигмами необходимы и принципиальны. Можем ли мы затем сказать более точно, каковы эти различия? Их наиболее очевидный тип уже неоднократно иллюстрирован выше. Следующие друг за другом парадигмы по-разному характеризуют элементы универсума и поведение этих элементов. Иными словами, их отличие касается таких вопросов, как существование внутриатомных частиц, материальность света, сохранение теплоты или энергии. Эти различия являются субстанциональными различиями между последовательными парадигмами, и они не требуют дальнейшей иллюстрации. Но парадигмы отличаются более чем содержанием, ибо они направлены не только на природу, но выражают также и особенности науки, которая создала их. Они являются источником методов, проблемных ситуаций и стандартов решения, принятых неким развитым научным сообществом в данное время. В результате восприятие новой парадигмы часто вынуждает к переопределению основ соответствующей науки. Некоторые старые проблемы могут быть переданы в ведение другой пауки или объявлены совершенно «ненаучными». Другие проблемы, которые были прежде несущественными или тривиальными, могут с помощью новой парадигмы сами стать прототипами значительных научных достижений. И поскольку меняются проблемы, постольку обычно изменяется и стандарт, который отличает действительное научное решение от чисто метафизических спекуляций, игры слов или математических забав. Традиция нормальной науки, которая возникает после научной революции, не только несовместима, но часто фактически и несоизмерима с традицией, существовавшей до неё.
Влияние работы Ньютона на традиции нормальной научной практики XVII века служит ярким примером этих более тонких последствий смены парадигмы. Ещё до рождения Ньютона «новая наука» столетия достигла успеха, отбросив наконец аристотелевские и схоластические объяснения, которые сводились к сущностям материальных тел. На рассуждение о камне, который упал потому, что его «природа» движет его по направлению к центру Вселенной, стали смотреть лишь как на тавтологичную игру слов. Такой критики раньше не наблюдалось. С этого времени весь поток сенсорных восприятий, включая восприятие цвета, вкуса и даже веса, объяснялся в терминах протяжённости, формы, места и движения мельчайших частиц, составляющих основу материи. Приписывание других качеств элементарным атомам не обошлось без неких таинственных понятий и поэтому лежало вне границ науки. Мольер точно ухватил новое веяние, когда осмеял доктора, который объяснял наркотическое действие опиума, приписывая ему усыпляющую силу. В течение последней половины XVII века многие учёные предпочитали говорить, что сферическая форма частиц опиума даёт им возможность успокаивать нервы, по которым они распространяются[102].
На предыдущей стадии развития науки объяснение на основе скрытых качеств было составной частью продуктивной научной работы. Тем не менее новые требования к механико-корпускулярному объяснению в XVII веке оказались очень плодотворными для ряда наук, избавив их от проблем, которые не поддавались общезначимому решению, и предложив взамен другие. Например, в динамике три закона движения Ньютона в меньшей степени являлись продуктом новых экспериментов, чем попыткой заново интерпретировать хорошо известные наблюдения на основе движения и взаимодействия первичных нейтральных корпускул. Рассмотрим только одну конкретную иллюстрацию. Так как нейтральные корпускулы могли действовать друг на друга только посредством контакта, механико-корпускулярная точка зрения на природу направляла стремление учёных к совершенно новому предмету исследования — к изменению скорости и направления движения частиц при столкновении. Декарт поставил проблему и дал её первое предположительное решение. Гюйгенс, Рен и Уоллис расширили её ещё больше, частью посредством экспериментирования, сталкивая качающиеся грузы, но большей частью посредством использования ранее хорошо известных характеристик движения при решении новой проблемы. А Ньютон обобщил их результаты в законах движения. Равенство «действия» и «противодействия» в третьем законе является результатом изменения количества движения, наблюдающегося при столкновении двух тел. То же самое изменение движения предполагает определение динамической силы, скрыто входящее во второй закон. В этом случае, как и во многих других, в XVII веке корпускулярная парадигма породила и новую проблему и в значительной мере решение её[103].
Однако, хотя работа Ньютона была большей частью направлена на решение проблем и воплощала стандарты, которые вытекали из механико-корпускулярной точки зрения на мир, воздействие парадигмы, возникшей из его работы, сказалось в дальнейшем в частично деструктивном изменении проблем и стандартов, принятых в науке того времени. Тяготение, интерпретируемое как внутреннее стремление к взаимодействию между каждой парой частиц материи, было скрытым качеством в том же самом смысле, как и схоластическое понятие «побуждение к падению». Поэтому, пока стандарты корпускуляризма оставались в силе, поиски механического объяснения тяготения были одной из наиболее животрепещущих проблем для тех, кто принимал «Начала» в качестве парадигмы. Ньютон, а также многие из его последователей в XVIII веке уделяли много внимания этой проблеме. Единственное очевидное решение состояло в том, чтобы отвергнуть теорию Ньютона в силу её неспособности объяснить тяготение; эта возможность широко принималась за истину, и всё же ни та, ни другая точка зрения в конечном счёте не побеждала. Не будучи в состоянии ни заниматься практикой научной работы без «Начал», ни подчинить эту работу корпускулярным стандартам XVII века, учёные постепенно приходили к воззрению, что тяготение является действительно некоей внутренней силой природы. К середине XVIII века такое истолкование было распространено почти повсеместно, а результатом явилось подлинное возрождение схоластической концепции (что не равносильно регрессу). Внутренне присущие вещам силы притяжения и отталкивания присоединились к протяжённости, форме, месту и движению как к физически несводимым первичным свойствам материи[104].
В результате изменение в стандартах и проблемных областях физической науки оказалось опять-таки закономерным. Например, к 40-м годам XVIII века исследователи электрических явлений могли говорить о притягивающем «свойстве» электрического флюида, не вызывая насмешек, которых удостоился мольеровский доктор столетие назад. И постепенно электрические явления всё больше обнаруживали закономерности, отличные от тех, которые в них видели исследователи, рассматривавшие их как эффекты механического испарения (effluvium), которое могло осуществляться только посредством контакта. В частности, когда электрическое действие на расстоянии сделалось предметом непосредственного изучения, то феномен, который сейчас мы характеризуем как электризацию через индукцию, смог быть признан в качестве одного из его следствий. Ранее, когда явление рассматривалось в общем виде, оно приписывалось непосредственному воздействию «электрических» атмосфер или утечке, неминуемой в любой электрической лаборатории. Новый взгляд на индукционное воздействие являлся в свою очередь ключом к анализу Франклином эффекта лейденской банки и, таким образом, к возникновению новой ньютоновской парадигмы для электричества. Динамика и электричество не были единственными научными областями, испытавшими влияние поиска сил, внутренне присущих материи. Большая часть литературы по химическому сродству и