удалось занять его место.

В действительности такие впечатляющие успехи в реализации германской атомной программы были достигнуты не за счет достижений ученых– теоретиков. В то время как группы ученых из Лейпцига, Берлина и Гейдельберга не спеша вели свои научные опыты, группа физиков и химиков под руководством профессора Пауля Гартека в Гамбурге работала совсем в другом ритме. Сам Гартек обладал выдающимися способностями мгновенного понимания проблемы на интуитивном уровне. Именно ему пришла в голову мысль о необходимости отделения в реакторе уранового топлива от замедлителя. Именно Гартек в начале 1940 года, за два года до Ферми, построившего реактор в Чикаго, создал первый прототип уранового реактора, в котором попытался использовать в качестве замедлителя диоксид углерода. Гартек и Суэсс разработали методику повышения производительности норвежского предприятия по выпуску тяжелой воды в десять раз. Наконец, Гартек и доктор Грот в течение года без устали трудились над отделением изотопов урана методом диффузии, а затем доктор Грот, к удивлению самого Гартека, разработал свой собственный оригинальный способ обогащения урана-235 с помощью ультрацентрифуги.

Результаты встречи с министром Шпеером показались Гартеку катастрофическими. Конечно, строительство бункера для берлинского реактора было нелишней мерой безопасности, однако для профессора означало полный провал то, что сам проект был отодвинут в область второстепенных программ как раз в то время, когда наметился явный успех в применении ультрацентрифуги для обогащения урана. 1 июня опыты по отделению изотопов ксенона с помощью ультрацентрифуги, построенной компанией «Anschutz & Co.» всего за полгода, дали ошеломляющие результаты. Процесс проходил в точном соответствии с теоретическими выкладками, и ученые планировали в самое ближайшее время перейти к опытам с гексафторидом урана.

26 июня, после того как доктор Дибнер побывал в Киле и в Гамбурге, где встречался с Гартеком и обсуждал с ним перспективы применения нового метода, профессор написал официальное письмо военному руководству, в котором просил об оказании дальнейшего содействия:

«Широко известно, что существует два типа урановых реакторов:

реактор первого типа состоит из природного урана и примерно пяти тонн тяжелой воды;

реактор второго типа состоит из металлического урана, обогащенного ураном-235, значительно меньшего количества по сравнению с первым типом и соответственно меньшего количества тяжелой воды или даже обычной воды.

Германская исследовательская группа избрала первый путь, в то время как американцы наверняка пойдут по второму. Только практика может показать, который из них окажется более перспективным. Однако в любом случае, поскольку реакторы второго типа обладают меньшими размерами, они смогут перевозиться армейскими транспортными средствами. Это значит, что второй путь более перспективен с точки зрения создания взрывчатого вещества».

Далее профессор Гартек пояснил, что применение в реакторе обогащенного урана прежде было невозможно, поскольку в Германии не была решена проблема обогащения изотопа урана-235. Однако успехи доктора Грота в экспериментах с ультрацентрифугой настолько впечатляющи, что «нам необходимо полностью сосредоточиться именно на втором типе реактора».

В начале августа были проведены первые опыты с применением в центрифуге гексафторида урана. В ходе первой серии опытов удалось добиться степени обогащения 2,7 процента, а затем после увеличения скорости вращения ротора – 3,9 процента. Эти показатели были значительно ниже расчетных, скорее всего, из-за загрязненности материалов, и все же обогащения удалось добиться. Группа берлинских ученых во главе с Гейзенбергом утверждала, что 11 процентов обогащения урана достаточно для того, чтобы перейти на использование в реакторе обычной воды. В свою очередь, для того, чтобы обеспечить такую степень обогащения, было достаточно построить несколько ультрацентрифуг, в которых реакция будет проходить последовательно.

Уже в поезде, по дороге из Киля обратно в Гамбург, усталому Гартеку пришла в голову мысль о том, как усовершенствовать конструкцию центрифуги: почему бы не разделить ротор по длине на несколько отдельных камер, каждая из которых соединялась бы с осью следующей камеры? И почему бы не соединить трубками две центрифуги, каждая из которых работала бы с различной скоростью и под разным, постоянно меняющимся давлением? Это позволит оптимизировать поток газа с одного ротора на другой и значительно повысить эффект применения даже одной такой двойной центрифуги.

Докладывая Герингу о важности применения ультрацентрифуги, профессор Эсау предлагал развернуть их массовое производство для получения значительного количества урана-235 после того, как будет достигнута оптимальная конструкция центрифуги. В конце октября конструкторы машины согласились с необходимостью применения предложений профессора Гартека по усовершенствованию машины. Гартек заверил их, что теперь, после того как была доказана возможность обогащения урана-235, германское правительство, несомненно, разместит большой заказ на производство такого оборудования.

В то же время осторожный профессор Эсау не был склонен раньше времени объявлять о том, что конечной целью проекта является создание атомной бомбы. В разговоре с профессором Хакселем, отвечавшим за взаимодействие с научными учреждениями, подчиненными ВМС Германии, Эсау заявил, что если мысль о реальности создания атомной бомбы дойдет до окружения фюрера, то и он, и Хаксель, и все их коллеги проведут всю войну за колючей проволокой до тех пор, пока это оружие действительно не будет получено. Хакселю посоветовали объявить конечной целью проекта создание «уранового двигателя».

Гейзенберг считал, что для достижения в урановом реакторе цепной реакции было необходимо иметь пять тонн тяжелой воды. До конца июня 1942 года завод в Веморке смог поставить в Германию только 800 килограммов, примерно одну шестую от требуемого количества. В середине июля в Берлине состоялось очередное совещание по увеличению производства тяжелой воды, в котором участвовали Дибнер, Берке, Гейзенберг, Боте, а также технические специалисты. Участники пришли к выводу, что при условии применения на построенном близ Мюнхена предприятии в реакции Клузиуса – Линде обычного водорода производительность составит всего 200 килограммов тяжелой воды в год. Было бы более эффективно применять водород, обогащенный дейтерием. Имелся ли в Германии источник такого слегка обогащенного водорода? Профессор Гартек считал, что такая реакция потребует значительных затрат энергии, в том числе для охлаждения, и водорода высокой степени очистки; однако никто не прислушался к его аргументам. Другие ученые предложили направить на электростанцию Мерано в Тироле специальную комиссию специалистов, которая должна будет изучить концентрацию тяжелой воды в гальванических элементах. Если она окажется достаточной, то предприятие в окрестностях Мюнхена сможет производить до полутора тонн тяжелой воды в год. В конце совещания был сделан общий вывод о том, что «проблема тяжелой воды важна, как никогда» и что необходимо изыскать другие способы ее производства, не дожидаясь результатов работы комиссии в Мерано.

Доктор Ганс Суэсс отправился на десять дней в Веморк, где вместе с главным инженером Йомаром Бруном они провели серию экспериментов с целью выяснить, в какой степени использование катализаторов, особенно на первых этапах процесса, способно оптимизировать технологию производства. Впервые немцы и норвежцы попытались решить проблему совместными усилиями. С помощью второго инженера завода в Веморке Альфа Ларсена они сымитировали в лабораторных условиях небольшую модель предприятия и приступили к испытаниям различных катализаторов.

К концу поездки Суэсса к ним присоединились приехавшие из Германии Вирц и Берке. Консул Шепке встретил их в Осло и в сопровождении норвежских инженеров Восле, Эйде и Йоханнсена отправил в Рьюкан. Наверное, шум электростанции в Веморке должен был вдохновить смешанную группу на успешное изобретение метода повышения производства тяжелой воды. В работе участвовал и директор компании «Norwegian Hydro». Все участники работ единодушно пришли к выводу, что значительно продвинулись в вопросе усовершенствования технологического процесса, особенно его шестого этапа. Брун и Суэсс в течение трех месяцев писали совместные отчеты военным о том, каких именно успехов удалось добиться и какие именно катализаторы применялись на шестой фазе производства тяжелой воды.

25 июля немецкие ученые посетили электростанцию в Захейме с целью определить, как успешно там идет производство. К тому времени тяжелую воду уже производили на электростанции Пехкранц; кроме того, ожидалось, что вот-вот такое производство будет развернуто на электростанции Бамаг близ Берлина. Было принято решение, что все имевшиеся в наличии гидроэлектротехнические ресурсы будут брошены на получение продукта SH.200 (тяжелой воды). Поскольку из-за целого ряда задержек не удалось получить

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату