характеристики описываются двумя различными теориями, представляющими два различных взгляда на живое, — теорией автопоэзиса и теорией диссипативных структур.

Попытавшись объединить эти две теории, мы сразу обнаружим некоторую нестыковку. В то время как все автопоэтические системы являются диссипативными, отнюдь не все диссипативные системы автопоэтичны. Илья Пригожий, движимый лишь общим интересом к природе живого, вывел свою теорию из изучения сложных тепловых систем и существенно неравновесных химических циклов [33].

Итак, диссипативные структуры не обязательно представляют собой живые системы, но коль скоро неотъемлемой частью их динамики является самоорганизация, все они обладают эволюционным потенциалом. Иными словами, можно говорить о «пребиотической эволюции» — эволюции неживой материи, по всей видимости начавшейся за некоторое время до возникновения живых клеток. Подобных взглядов придерживаются сегодня очень многие ученые.

Первое обстоятельное изложение идеи, согласно которой живая материя происходит из неживой путем непрерывного эволюционного процесса, было предложено ученому миру русским биохимиком Александром Опариным в его классическом труде «Происхождение жизни», увидевшем свет в 1929 году [34]. Опарин назвал такой процесс «молекулярной эволюцией»; сегодня же о нем обычно говорят как о «пребиотической эволюции». Как пишет Пьер Луиджи Луизи: «Из небольших молекул образовывались соединения, отличавшиеся все большей молекулярной сложностью и качественно новыми свойствами, пока наконец не появилось наиболее экстраординарное из спонтанно возникающих свойств — сама жизнь» [35].

Несмотря на то, что идея пребиотической эволюции получила сегодня широкое признание, среди ученых нет единого мнения относительно деталей этого процесса. Было предложено несколько возможных сценариев, но ни один из них не удалось продемонстрировать на опыте. Отправной точкой одной из таких схем служат образованные ферментами каталитические циклы и «гиперциклы» (циклы со множеством обратных связей), способные к самовоспроизведению и эволюции [36]. Другой сценарий основывается на недавнем открытии, согласно которому некоторые виды РНК также могут играть роль ферментов, т. е. выступать катализаторами метаболических процессов. Такая твердо установленная каталитическая способность РНК позволяет представить себе некую эволюционную стадию, на которой две важнейшие функции живой клетки — перенос информации и каталитическая деятельность — выполняли молекулы одного типа. Специалисты назвали эту гипотетическую стадию «РНК-миром» [37].

Согласно эволюционному сценарию РНК- мира, сперва молекулы РНК выполняли каталитическую функцию, необходимую для того, чтобы скопировать самих себя, после чего начали синтезировать белки, в том числе ферменты. Последние оказались значительно более эффективными катализаторами и в конце концов стали играть в этом отношении главенствующую роль. Наконец, в игру вступили молекулы ДНК — главные переносчики информации, которые благодаря своему двухнитевому строению обладают к тому же способностью корректировать погрешности при ее копировании. На этой стадии РНК взяла на себя посредническую функцию, которую выполняет по сей день, уступив роль хранителя информации более эффективной в этом плане ДНК, а катализирующую роль — белкам- ферментам.

Элементарная жизнь

Все эти сценарии носят пока что весьма умозрительный характер — идет ли при этом речь о каталитических гиперциклах белков- ферментов, которые окружили себя мембранами, а затем неким образом создали структуру ДНК, об РНК- мире, развившемся в нынешние ДНК, РНК и белки, или же, в недавнем переосмыслении, об объединении этих двух сценариев [39]. Но как бы ни происходила пребиотическая эволюция, возникает интересный вопрос: можно ли говорить о живых системах на некоей стадии, предшествующей возникновению клеток? Иными словами, можно ли как-нибудь определить элементарные характеристики гипотетических живых систем прошлого независимо от того, во что они превратились впоследствии? Вот как на этот вопрос отвечает Луизи:

Ясно, что процесс, приведший к существованию жизни, непрерывен, и это чрезвычайно затрудняет точное ее определение. По существу, на пути, намеченном Опариным, есть множество мест, где можно было бы произвольно установить знак «элементарная жизнь». Это и стадия саморепликации, и стадия, где саморепликация... стала сопровождаться химической эволюцией, и тот момент времени, когда белки и нуклеиновые кислоты стали взаимодействовать друг с другом, и стадия формирования генетического кода, и время возникновения первой клетки [40].

Луизи приходит к выводу, что степень содержательности различных определений элементарной жизни (пусть даже в равной мере обоснованных) зависит от тех целей, для которых их используют.

Если основная идея пребиотической эволюции верна, значит, ее в принципе возможно продемонстрировать в лаборатории. Задача ученых, работающих в этой области, — получить жизнь из отдельных молекул или по меньшей мере воспроизвести различные эволюционные стадии того или иного пребиотического сценария. Будь в распоряжении химиков окаменелости, повествующие о развитии пребиотических систем со времени образования на Земле первых горных пород до момента возникновения первой клетки, это дало бы им ценные сведения о промежуточных структурах. Но таких свидетельств нет, и задача ученых может показаться невыполнимой.

Тем не менее, в последнее время в этом отношении достигнуты существенные успехи; к тому же не следует забывать, что данная область исследований еще весьма молода. Систематических исследований происхождения жизни не проводилось около полувека, но даже несмотря на то, что наши представления о пребиотической эволюции по-прежнему весьма умозрительны, большинство биологов не сомневаются: жизнь на Земле возникла в результате цепочки химических событий, подчиняющихся законам физики, химии и динамики сложных систем.

Эта идея убедительно и весьма аргументировано отстаивается Гарольдом Моровицем в его великолепной брошюре «Начала клеточной жизни» [41], положениям которой я намереваюсь посвятить остаток этой главы. Моровиц подходит к вопросу о пребиотической эволюции и происхождении жизни с двух сторон. Прежде всего, он определяет те основные молекулярно-биологические и биохимические принципы, которые являются общими для всех живых клеток. Он проводит эволюционную ретроспективу этих принципов вплоть до момента возникновения бактериальной клетки и доказывает, что они должны были играть ключевую роль в формировании «протоклеток», из которых развились первые клетки: «В силу исторической непрерывности, пребиотические процессы должны были наложить отпечаток на современную биохимию» [42].

Определив основные физические и химические принципы, управлявшие формированием протоклеток, Моровиц задается вопросом: как могла материя, подчиненная этим принципам и подверженная воздействию имевшихся в те времена на земной поверхности энергетических потоков, самоорганизоваться таким образом, чтобы произвести на свет различные виды протоклеток и, наконец, первую живую клетку?

Составляющие живого

Основные химические составляющие жизни — это ее атомы, молекулы и химические процессы, или «метаболические пути». Подробно обсуждая эти составляющие, Моровиц изящно показывает, что жизнь уходит корнями глубоко в основы физики и химии.

Можно начать с того наблюдения, что для формирования сложных биохимических структур необходимы кратные химические связи и что из всех имеющихся атомов регулярно образуют такие связи только углерод (С), азот (N) и кислород (О). Известно также, что наиболее прочные связи образуют легкие атомы. Поэтому неудивительно, что вышеупомянутые три элемента наряду с легчайшим из элементов, водородом (Н), являются основными в биологических структурах.

Мы также знаем, что жизнь началась в воде и что клеточная жизнь по-прежнему протекает в водной среде. Моровиц отмечает, что молекулы воды (Н2О) существенно электрически поляризованы, потому что электроны в них располагаются ближе к атому кислорода, чем водорода, так что эффективный заряд последнего оказывается положительным, а кислорода — отрицательным. Эта полярность является важнейшей чертой молекулярных биохимических процессов биохимии, в частности, как мы увидим ниже, формирования мембран.

Наконец, к числу основных атомов биологических структур относятся фосфор (Р) и сера (S). Уникальность их химических свойств в том, что они легко образуют различные соединения, и биохимики считают, что именно эти элементы были основными в пребиотической химии. В частности, некоторые фосфаты принимают участие в преобразовании и переносе химической энергии, что было столь же важно во времена пребиотической эволюции, как и сегодня, в процессах клеточного метаболизма.

Перейдя от атомов к молекулам, упомянем о существовании универсального набора небольших органических молекул, используемого всеми клетками в качестве пищи для своего метаболизма. И хотя животные потребляют разнообразнейшие молекулы вплоть до сложнейших, прежде, чем эти последние оказываются вовлечены в клеточные метаболические процессы, они разлагаются на более мелкие составляющие. Собственно говоря, общее число различных пищевых молекул не превышает нескольких сотен — факт, весьма примечательный в свете того, как много различных простых соединений можно образовать из атомов

Вы читаете Скрытые связи
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату