38

Лишь Эйлер в следующем веке показал, что эта дробь, если «a» целое и неквадратное число, будет периодической. (Примеч. авт.)

39

Задача эта сводится к выражению xn + yn = zn. (Примеч. авт.)

40

Великая теорема Ферма. (Примеч. авт.)

41

В 45-м замечании к книге Диофанта Ферма даст развернутое доказательство нерешаемости для четвертой степени уравнения: x4 + y4 = z4 в целых числах, к чему мы еще вернемся. Еще раньше, в 33-м замечании, говоря о Диофанте, Ферма написал: «Почему же он не ищет двух биквадратов, сумма которых равна квадрату? Конечно, потому, что эта задача невозможна, как это с несомненностью показывает наш метод доказательства». (Примеч. авт.)

42

Примечание автора для особо интересующихся. Графическое решение «бинома Ньютона в третьей степени» представлено на рисунке, выполненном заслуженным деятелем науки и техники РСФСР доктором технических наук профессором М. М. Протодьяконовым. Куб у него складывается из кубов, среднего со стороной y и малого со стороной x, расположенных по диагонали большого куба, со стороной x + y, трех пластин объемом x2 y и трех брусков объемом x2 y, точно заполняющих оставшиеся в большом кубе места от двух первых кубов. Объемы всех этих фигур соответствуют: (x + y)3 = x3 + 3x2 y + 3xy2 + y3.

43

Примечание автора для особо интересующихся. «Метод спуска» Ферма изложен в его 45-м примечании к «Арифметике» Диофанта и в его письме к Каркави, где для доказательства того, что площадь прямоугольного треугольника не может быть равна квадрату целого числа, говорилось: «Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы, в силу подобного рассуждения, третий, меньший второго, который имел бы то же свойство, и, наконец, четвертый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я все время подразумеваю целые числа). Откуда заключаю, что не существует никакого прямоугольного треугольника с квадратной площадью».

44

Примечание автора для особо интересующихся. «Метод подъема» гипотетически мог бы быть изложен так: «Если прямоугольный треугольник можно построить только на плоскости, имеющей два измерения, и свойством такого «плоского места» будет пифагоров закон о том, что квадрат гипотенузы равен сумме квадратов катетов, то нет оснований полагать, что подобные «законы» отражают свойства «пространственных» и «субпространственных мест» с тремя и более измерениями, что при переходе (подъеме) от плоскости к объему (кубу, параллелепипеду или другой пространственной фигуре) диагональ, скажем куба, возведенная в третью степень, будет равна сумме других отрезков, укладывающихся в эту фигуру (сторон куба) в третьей степени. И еще меньше оснований полагать, что при переходе к «невообразимым фигурам» четырех и больше измерений можно найти целочисленное решение для четвертой степени одного отрезка, равного сумме двух других отрезков в четвертых степенях каждый. Для необоснованности подобных предположений достаточно доказать, что целочисленных решений нет, скажем, для биквадратов, что и будет общим доказательством отсутствия целочисленных решений для «пространственных» и «субпространственных» фигур вообще.

45

Математики, предполагающие, что Ферма ошибся в своем доказательстве Великой теоремы и она простыми средствами якобы недоказуема, могут отыскать «ошибку» и в приведенном здесь «ГИПОТЕТИЧЕСКОМ» «методе подъема», учтя, однако, при этом как его «литературную условность», так и математическое значение упомянутых «вероятностных кривых», которые, очевидно, должны отражать поддающуюся экстраполяции закономерность. И не забыть при этом корректность практической проверки доказательства.

46

В 1967 году Эме Мишель опубликовал в журнале «Сьянс э ви» («Наука и жизнь») статью, где сообщил, что Сирано де Бержерак 350 лет тому назад писал о многоступенчатых ракетах для межпланетных сообщений, о явлении невесомости, о законе тяготения (открытом Ньютоном сто лет спустя), о парашютирующем спуске, описал устройства, напоминающие радио- и телевизионную аппаратуру, звукозапись (в виде сережек, закрепляемых на ухе и включающих в нужном месте чтение требуемой главы мысленным (биотоки мозга!) приказом). В опровержение существовавших при нем представлений он утверждал, что живые организмы состоят из клеток, что вокруг нас мир невидимых существ, микробов (открытых Пастером через двести лет), что в крови находятся антитела (обнаруженные лишь в наше время). (Примеч. авт.).

47

Прочитанная Бержье цитата встретилась мне и в статье академика В. И. Невского, предварявшей трактат Сирано де Бержерака «Иной свет, или Государства и империи Луны», изд. Академии, 1931. (Примеч. авт.).

48

Из числа ненайденных стихотворений Сирано де Бержерака, быть может, написанных в пору, когда он прославился как первый дуэлянт Парижа, тщетно пробивая себе дорогу к счастью.

49

Из вступительной статьи акад. В. И. Невского к трактату Сирано де Бержерака «Иной свет», М., «Академия», 1931.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату