работать только тогда, когда становятся достоянием производства.
Мы как-то привыкли говорить только о природных ресурсах и забываем о человеческих. Ведь в конечном счете все создается трудом человека. Мы должны- научиться лучше использовать возможности человека и, в первую очередь интеллектуальные. Эксплуатировать сейчас только его физическую силу неразумно. Одна из основных задач на сегодняшний день — создание автоматизированных производств, которые освободили бы человека от непроизводительного труда. Человек должен думать, а машина — исполнять.
В XXI веке на ночном небосводе ярко загорятся новые «созвездия» — энергетические спутники Земли. Моя уверенность в этом основывается прежде всего на высоких темпах развития космической науки и техники. Всего за два с небольшим десятилетия наша страна проделала гигантский путь от запуска первого искусственного спутника Земли до создания на орбите уникальных комплексов типа «Салют» — «Союз». Их появление открывает возможности и для строительства в космосе крупных объектов, наделяет реалистическими чертами проекты, еще недавно казавшиеся фантастическими.
С другой стороны, нельзя не отметить, что космическая гелиоэнергетика — экологически самая чистая. И практически неисчерпаемая. Не исключая атомной энергетики, она может существенно дополнить ее. В минуту Солнце посылает на Землю столько же энергии, сколько за полтора года вырабатывают все электростанции нашей страны. В космосе же ее еще больше: там нет восхода и захода Солнца и атмосферы облаков, препятствующих прохождению лучей. Поэтому на единицу космической площадки поступает в десять раз больше солнечной энергии, чем на такую же площадь земной поверхности. Причём поступает круглосуточно. Вот почему сверхмощные потоки солнечных лучей гораздо выгоднее «перехватывать» в космосе с помощью гигантских орбитальных гелиостанций.
За последние двадцать лет космическая гелиоэнергетика получила интенсивное развитие. Благодаря работам научно-производственного объединения «Квант», возглавляемого членом-корреспондентом Академии наук СССР Н. Лидоренко, других коллективов, созданы фотоэлектрические устройства, преобразующие солнечное излучение в электрическую энергию. Установленные на спутниках и космических кораблях, они питают током аппаратуру, вспомогательные двигатели, системы жизнеобеспечения экипажей. Набирают темп работы по использованию гелиоэнергетики в маршевых электрореактивных двигателях космических аппаратов, предназначенных для полетов в труднодоступные области межпланетного пространства — например, к дальним планетам Солнечной системы.
В то же время наша научная общественность занимается и более отдаленными проектами «индустриализации» ближнего космоса — я имею в виду космические солнечные электростанции (КЭС), конструктивный облик которых в основном уже определился. Они будут представлять собой грандиозные сооружения массой в 20–60 тысяч тонн, поднятые над Землей примерно на 36 тысяч километров. Мощность такой КЭС оценивается в 5 миллионов киловатт, на миллион больше, чем у самой крупной в Европе Ленинградской АЭС. Такую мощность обеспечат многие тысячи солнечных батарей, размещенных на панелях КЭС, площадь которых составит около пятидесяти квадратных километров.
Станция, выведенная на геостационарную орбиту, «повиснет» над одной точкой земной поверхности. Круглосуточно освещаемая Солнцем, она станет непрерывно вырабатывать электроэнергию. Только весной и осенью раз в сутки КЭС будет входить в тень Земли на непродолжительное время — максимум на 1 час 15 минут.
Передавать энергию на Землю можно с помощью лазерного или сверхвысокочастотного излучения. Второй способ предпочтительнее по ряду причин. СВЧ-излучение устойчиво в условиях космического холода, беспрепятственно проникает сквозь толщу атмосферы, не боится туманов и грозовых туч. У него сравнительно низкие потери при прямом и обратном преобразовании. Наконец, космическая гелиоэнергетика сможет широко использовать уже созданные и отработанные СВЧ-устройства. На Земле это излучение поступит на приемную антенну, диаметр которой составит несколько километров. Здесь его энергия будет преобразована в электрический ток, который вольется в энергосистему страны.
Для монтажа КЭС, доставки их на рабочие орбиты и обслуживания потребуются сборочно-монтажные, межорбитальные транспортные и эксплуатационные космические средства. Их создание представляет не менее сложную задачу, чем строительство самих КЭС. Ключом к решению всей этой проблемы будут грузовые сверхмощные ракеты-носители, с помощью которых элементы КЭС станут выводиться с Земли на низкую околоземную орбиту отдельными конструкциями массой от 100 до 500 тонн. Расчеты показывают, что за год двумя сверхмощными транспортными средствами можно доставить в космос все элементы одной КЭС.
Уже сейчас можно уверенно сказать, что для реализации проекта создания КЭС не существует непреодолимых трудностей. Это не означает, что их вообще нет. Но нерешенные проблемы носят не принципиальный, а скорее технический характер. Именно о них шли дискуссии в ходе работы нашей секции.
В частности, на ней были доложены интересные результаты теоретических и прикладных исследований, направленных на снижение стоимости оборудования станции, обещающих обеспечить ее высокоэффективную работу. Так, доктор технических наук С. Ряби-ков показал возможность резкого повышения коэффициента полезного действия солнечных батарей за счет увеличения концентрации солнечной энергии в сто и более раз. Профессор Н. Арманд и другие ученые предложили систему точечной ориентации антенны КЭС с помощью радиоинтерферометров: она позволит свести к минимуму помехи для тропосферной и вещательной связи, создаваемые СВЧ-излучени-ем при передаче на Землю большого потока электроэнергии.
Наряду с исследованиями отдельных проблем космической электроэнергетики, по мнению ученых, в настоящее время уже есть предпосылки для разработки технииеского проекта головного образца КЭС с полезной мощностью 100–500 тысяч киловатт. Его следует рассматривать как прототип будущих гигантских электростанций. Он должен экспериментально подтвердить эксплуатационные и технико-экономические характеристики систем и агрегатов КЭС, систем выведения, сборочных и ремонтных орбитальных средств. Сооружение такого головного образца КЭС — задача огромной технической сложности. Она требует беспрецедентных по масштабу монтажных работ на орбите, финансовых и материальных затрат. Поэтому здесь целесообразна международная кооперация ученых и инженеров.
Примеры международной кооперации в осуществлении крупных и дорогостоящих проектов уже есть. Скажем, по инициативе Советского Союза ученые СССР, европейских стран, США, Японии сообща приступили к созданию интернационального термоядерного реактора «Интор». Этот сложный и дорогостоящий реактор, в котором будут реализованы технические принципы советской исследовательской установки «токамак», должен продемонстрировать возможность получения электроэнергий за счет управляемого термоядерного синтеза. По оптическим подсчетам специалистов, «Интор» станет первым в истории человечества опытом совместного решения глобальной энергетической проблемы в интересах многих стран.
По нашему мнению, международное сотрудничество в исследовательских, проектных работах по созданию орбитальных электростанций — важнейшее условие для освоения неисчерпаемых ресурсов солнечной энергии. Именно благодаря кооперации коллективов ученых и инженеров разных стран в проект головной КЭС могут быть заложены самые передовые технические решения, самые последние достижения ракетно-космической, радиотехнической, электронной и других отраслей промышленности. И если в XXI веке примерно десять-двадцать процентов мирового энергопотребления будет обеспечиваться космическими солнечными электростанциями — это будет большой победой созидательных сил человечества.
Вот что рассказал академик В. Авдуевский.
В принципе солнечную энергию в космосе собрать можно так же, как и на Земле. А земной опыт у нас уже кое-какой накоплен. Пионером использования солнечной энергии считается Архимед, сумевший с помощью зеркал сжечь вражеский флот. Можно пойти по его стопам, установив на космических спутниках