Сказанное относится и к проблеме переработки отходов. Конечно, в них содержится энергия. Но в каких случаях ее использование окажется целесообразным, решит в конечном итоге экономика. Например, некоторые крупные механизированные животноводческие фермы уже сегодня экономически оправданно переводить на энергетическое самообеспечение, извлекая энергию из отходов животных. Или возьмите большинство тропических стран, где рост зеленой массы происходит достаточно быстро и обильно. Там она уже сейчас может дать много полезной энергии, и может давать еще больше…

Законы физики говорят о том, что эффективность любого устройства, преобразующего тепло в электроэнергию, есть величина, пропорциональная верхней температуре рабочего тела. Паротурбинные электростанции достигли сегодня максимума КПД, и надо искать такой метод преобразования тепла в электроэнергию, который позволил бы использовать более высокий уровень температуры. Это поможет сделать МГД-генераторы, работающие в комплексе с паровой турбиной. КПД таких электростанций должен вырасти в полтора раза. Если думать о будущем энергетики, то мы должны не только постоянно искать новые источники электроэнергии, но и находить еще более эффективный метод использования существующих источников. И здесь МГД является пока единственным способом, который позволяет это делать для «большой энергетики».

Итак, существуют три пути решения глобальных энергетических проблем будущего: нахождение новых источников энергии, более эффективное использование существующих и, наконец, рациональное расходование добытой энергии.

ЭНЕРГИЯ СОЛНЦА

Вот что рассказал академик Жорес Алферов.

Наша страна располагает значительными запасами природного топлива. Высокий темп промышленного освоения и эксплуатации месторождений у нас продолжает оставаться стабильным. Тем не менее и нам необходимо заботиться о создании научно-технического задела энергетики будущего.

Пути ее решения были обозначены на XXVI съезде партии, в документах которого предусмотрено «увеличить масштабы использования в народном хозяйстве возобновляемых источников энергии (гидравлической, солнечной, ветровой, геотермальной)».

Применительно к отечественной солнечной энергетике это означает переход к широкому внедрению результатов в практику. Речь идет, по существу, о создании промышленной отрасли, специализированной на выпуске различных гелиоэнергетических установок.

Некоторый опыт в этом уже имеется. Серийно выпускаются, к примеру, фотоэлементы — основные источники электричества для космических аппаратов. Успешно разрабатываются преобразователи солнечного излучения для нужд теплоснабжения. И все-таки многое остается еще неясным, очень многое предстоит делать впервые. Проблема представляется весьма сложной, но, бесспорно, разрешимой.

Если касаться ближайших задач, то одна из них состоит в том, чтобы определить оптимальную долю гелиоэнергетики в энергетической системе страны. Вопрос очень непростой, требует всесторонне взвешенного и тщательно обоснованного ответа. Не случайно по этому поводу скрещиваются полемические копья представителей различных научных школ и направлений, ведомств. Суждения высказываются подчас диаметрально противоположные.

Конечно, перевести всю энергетику страны на гелиотехнику нереально, по крайней мере в обозримом будущем. Но и вовсе отказываться от использования энергии Солнца, этого поистине неиссякаемого источника тепла и света, тоже было бы неверно. Не будем также забывать и о том, что с точки зрения экологии солнечная энергия идеальна, поскольку не нарушает равновесия в природе.

Оставив в стороне вопросы загрязнения окружающей среды продуктами сгорания топлива, отмечу одну важную особенность роста производства энергии, получаемой сжиганием любого вида материалов. Речь идет о «тепловом загрязнении» планеты вследствие гигантских масштабов энергопотребления. Разные группы ученых согласно оценивают его угрожающий верхний предел. Необратимые последствия, утверждают они, наступят, если энергопотребление по сравнению с сегодняшним увеличится в сто раз.

Величина кажется на первый взгляд довольно значительной. Однако расчеты показывают, что кризисная ситуация может возникнуть относительно скоро. К тому же нужно учесть и так называемый «парниковый эффект», возникающий вследствие роста концентрации углекислого газа в атмосфере, главным образом из-за выбросов угольных электростанций. Следовательно, критическое повышение температуры может наступить еще раньше.

Вывод из всего этого ясен — на определенном этапе развития цивилизации крупномасштабное использование солнечной энергии становится просто необходимым. При всей очевидности этого обстоятельства у гелиоэнергетики пока немало противников.

К чему сводятся их возражения? Из-за низкой плотности энергии в солнечном излучении установка аппаратуры для ее улавливания приведет к изъятию из землепользования огромных площадей, а само преобразование света в приемлемые для хозяйственной деятельности виды энергии столь дорого, что понадобятся нереальные материальные и трудовые затраты, утверждают они. Так ли это? Расчеты говорят, что для выработки всей потребляемой сегодня в стране электроэнергии даже с помощью серийных промышленных полупроводниковых преобразователей, чей КПД пока лишь 10 процентов, понадобилось бы занять под солнечные электростанции менее 10 тысяч квадратных километров в среднеазиатских районах.

Учтем и другое. Экономичности и эффективности способов преобразования солнечной энергии сейчас уделяется пристальное внимание исследователей. В числе предлагаемых ими методов наиболее привлекательным представляется использование фотоэлектрического эффекта в полупроводниках. О чем идет речь?

Фотоэффект в полупроводниках был открыт еще в 70-х годах прошлого столетия и вот уже более века интенсивно изучается в лабораториях, широко используется в практике. Академик А. Иоффе мечтал о применении полупроводниковых фотоэлементов в солнечной энергетике еще в тридцатые годы, когда Б. Коломиец и Ю. Масла-ковец создали в Физико-техническом институте АН СССР серно-таллиевые фотоэлементы с рекордным для того времени коэффициентом полезного действия в один процент. Дальнейший импульс развитию этого направления поиска дали кремниевые фотоэлементы, первые образцы которых имели КПД около 6 процентов. Вот уже почти четверть века подобные батареи — основной источник энергоснабжения космических аппаратов.

Еще недавно полагали, будто фотоэлектрический метод пригоден лишь для решения частных задач — создания, например, автономных систем электропитания в труднодоступных районах. Совершенствование методов производства полупроводникового кремния, расширение гаммы используемых материалов, создание принципиально новых типов фотоэлектрических преобразователей кардинально меняют положение. У лабораторных образцов кремниевых фотоэлементов КПД достиг 18 процентов. В практике широко используются элементы с КПД 12–14 процентов. В условиях концентрированных солнечных потоков «производительность» ряда преобразователей на основе полупроводниковых гетероструктур значительно выше. Стоимость же «пикового» киловатта электрической мощности при использовании кремниевых фотоэлементов снизилась в 2–3 раза.

Достигнутое не предел. На основе известных материалов и принципов вполне реально уже в ближайшее время создать фотоэлементы полезного действия 35–40 процентов, а теоретически КПД преобразователей с использованием объемного фотоэффекта в гипотетических пока материалах может превысить и 90 процентов.

Так же реально в сотни и тысячи раз сократить занимаемую фотоэлементами площадь, предварительно концентрируя солнечные потоки. Некоторое удорожание из-за усложнения конструкций и технологий изготовления новых фотопреобразователей с лихвой компенсируется повышением их эффективности. Каскадные фотопреобразователи на основе гетероструктур арсенид галлия — арсенид алюминия совсем недавно достигли КПД 30 процентов. Это открывает хорошие перспективы создания мощных солнечных электростанций.

Немаловажно для практики, что стоимость модуля солнечной станции для концентрированных потоков излучения на основе серийно выпускаемых промышленностью простейших арсенид-галлиевых гетерофотопреобразователей в несколько раз ниже, чем у самых дешевых кремниевых фотоэлементов для

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату