представить, как можно проверить условия сингулярности. Сингулярности без горизонта, видимо, не существует, а изучать что-то под горизонтом запрещают законы природы. То есть мы можем слетать и изучить, но не можем передать информацию обратно, в этом и есть определенные сложности.

- Расскажите, пожалуйста, об излучении Хокинга.

Излучение Хокинга — это очень интересное предсказание, еще говорят об испарении черных дыр, которое происходит за счет этого эффекта. Обычно это иллюстрируют таким образом. Вакуум — это не пустое пространство, у него есть энергия, в нем происходят различные интересные процессы, в нем рождаются пары частиц и античастиц, которые потом аннигилируют и исчезают. Такие недолго живущие частицы называются виртуальными. Свойства вакуума как непустой среды, где постоянно бурлят виртуальные частицы, — это наблюдаемый эффект. А если рождение виртуальных частиц начинает происходить близко от горизонта событий, то одна из частиц пары может исчезнуть под горизонтом, и тогда вторая не сможет с ней проаннигилировать. Получается, что из вакуума как бы рождается новая частица. На самом деле, откуда-то энергию надо брать. Предположим, у этого процесса есть наблюдатель. Издалека ему будет казаться, что от черной дыры к нему летят частицы. Мы знаем, что энергия сохраняется, значит, наблюдатель должен решить, что она возникает из черной дыры. А если черная дыра не заряжена и не вращается, у нее есть один-единственный источник энергии — ее масса. Значит, частицы должны рождаться за счет уменьшения массы черной дыры. Она как бы испаряется, как капля воды, молекулы потихонечку из нее улетают.

- А почему она не пополняется извне?

Конечно, в обычных условиях, она как раз пополняется. Представьте, что не было бы никакого излучения Хокинга. Берем черную дыру, помещаем её в реальное межзвездное пространство, межзвездный газ на нее падает, масса черной дыры растет. Так и должно происходить. Плюс всё-таки есть процесс излучения частиц, который существует просто в силу природы черной дыры. Так вот, важно, что именно в конкретной ситуации превалирует. Если речь идет о черной дыре, которая образовалась из массивной звезды, то оказывается, что излучение Хокинга для неё очень слабо, и её масса растет за счет того, что в чёрную дыру попадает межзвездный газ или ещё что-то. Но чем меньше черная дыра, тем важнее излучение Хокинга относительно захвата частиц. Это можно объяснить так: чем меньше черная дыра (пусть она будет сферическая), тем меньше радиус, тем больше кривизна поверхности. Люди жили тысячи лет на Земле, и не знали, что она круглая, потому что ее размер достаточно большой. Нам кажется, что Земля плоская, а если бы ее радиус был не 6 400 км, а 640 км, люди бы всегда знали, что она круглая, потому что, передвигаясь, убедились бы в этом. Так вот, чем меньше радиус, тем больше кривизна, и именно этот параметр важен для излучения Хокинга. Поэтому маленькие черные дыры испарялись бы очень быстро, но где взять маленькие черные дыры? Сейчас они в природе естественным образом не должны возникать. Из звезд сделать маленькие черные дыры нельзя, астероиды никогда не схлопываются, а чтобы на наших глазах черная дыра испарилась, нужна ее начальная масса, как у астероида.

Есть модели, в которых предсказывается, что на самых ранних этапах жизни Вселенной образовывались маленькие черные дыры, и если это так, сейчас они должны активно испаряться из-за излучения Хокинга. Ученые пытаются найти его, это должно быть гамма-излучение. Пока есть только верхние пределы, хорошие кандидаты в первичные черные дыры, которые сейчас испарялись бы, не найдены. Если они будут обнаружены, это станет самым прямым доказательством, что мы имеем дело именно с черными дырами.

- Как черные дыры были обнаружены? Как их наблюдают?

С одной стороны, о черной дыре можно говорить как о физическом объекте, который обладает определенными внутренними свойствами, с другой стороны, можно рассматривать черную дыру как астрономический объект. Астрономия — наука необычная, это единственная естественная наука, где мы не можем прямо экспериментировать, а можем только наблюдать издалека. Поэтому для астрофизика черная дыра — это объект, который выглядит как черная дыра, что, в общем-то, не одно и то же, ведь могут быть настоящие дорогие швейцарские часы, а может быть их дешевая имитация. Так и астрофизикам бывает трудно отличить одно от другого. Поэтому когда ученые говорят о черных дырах, они имеют в виду массивные компактные объекты, которые демонстрируют определенные наблюдательные свойства, например, видимое отсутствие поверхности и малое излучение. Сейчас самая надежная черная дыра — это та, которая находится в центре нашей галактики.

- Надежная в каком смысле?

В том смысле, что это объект, астрофизические свойства которого наиболее близки к тому, что мы думаем о черных дырах. Что мы имеем? Мы имеем объект с массой примерно три-четыре миллиона солнечных масс (это напрямую измерено) с размером, меньшим, чем несколько астрономических единиц, который излучает очень мало. Если мы подумаем, как мы еще можем сделать объект, который при такой большой массе имеет такой маленький размер, и который ничего не излучает, то окажется, что сделать это крайне сложно. Черная дыра — это консервативная гипотеза. Одна из самых важных характеристик черной дыры, повторюсь, это массивность и компактность. Другим способом, без теории черной дыры, таких характеристик достичь очень сложно. Вы, например, можете сказать, что там сидит объект относительно холодный и не светится, но если вы попробуете сделать железный объект такой массы, то ничего не получится, гравитация победит, он схлопнется, и все равно превратится в черную дыру. Если вы будете делать такой объект из звездного вещества, он будет ярко светить, и, перебирая разные варианты из того, что предлагает нам стандартная модель, черная дыра — это единственное, что нам подходит. Мало того, мы видим, как газ течет на этот объект. Он падает в гравитационное поле, разгоняется, и если бы внизу была поверхность, газ бы при ударе об эту стенку нагрелся, и мы увидели бы излучение, но мы его не видим. То есть он действительно падает как в дыру, отчасти отсюда и название. И действительно очень сложно придумать модель, которая бы описала такое явление без привлечения черной дыры. Поэтому можно сказать, что вот так мы и наблюдаем черные дыры.

В центрах других галактик мы видим массивные объекты, и тоже достаточно компактные. Поскольку другие галактики дальше, ограничения на размер менее жесткие, но все равно, если мы знаем, что в центре галактики сидит массивный и компактный объект с массой миллиард солнечных, очень трудно придумать, как еще он мог образоваться. Считается, что это черные дыры. Есть еще черные дыры в двойных звездных системах, это когда одна из двойных звезд превращается в черную дыру.

Теоретически, мы можем наблюдать черные дыры просто как невидимые массивные спутники звезд, но чаще их наблюдают по излучению газа, падающего в дыру. Поскольку они обладают очень сильным гравитационным полем, то объекты, падающие в черную дыру, разгоняются до очень большой скорости и формально пересекают горизонт со скоростью света. Так вот если мы просто бросаем предмет в черную дыру, то он туда падает, и практически ничего не излучается. Но мы можем себе представить другую ситуацию. Мы кидаем два предмета в черную дыру, они сталкиваются друг с другом незадолго до падения под горизонт. То есть получается, что у нас сталкиваются два объекта, двигающиеся с очень высокой скоростью. При этом каждый для другого является стенкой, и выделяется очень большая энергия. В реальности на черную дыру может течь газ, поэтому газ сталкивается сам с собой. Например, если в начале был момент вращения, вокруг черной дыры может образоваться диск, и из-за трения этот быстро движущийся газ разогревается до миллионов градусов, при этом выделяется очень много энергии. Это простой, но очень эффективный способ генерации энергии, и черные дыры наблюдаются по излучению этого падающего газа. Такая схема реализуется, например, в двойных системах, если вещество из одной звезды течет в другую, которая в данном случае является черной дырой. Черная дыра, на которую идет мощный поток вещества в центре галактики, называется квазаром. Квазаров очень много, мы знаем как минимум

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату