пользоваться сервисом регулярно. Поэтому такой период вывода чего-то в параллель не только приятен разработчикам, но и очень важен юзабилистам и маркетологам.
Почему все эти вещи я считаю абсолютно необходимыми для юзабилистов? Есть такая затасканная поговорка: у вас нет второго шанса произвести первое впечатление. Вот в том, насколько сильно отличается первое восприятие сервиса и лояльность к сервису, действительно главную роль играет интерфейс, очень важна и функциональность. Как ни странно, изменения функциональности гораздо меньше сказываются на сроках общения с сервисом чем реальное удобство использования. А удобство — это все- таки к юзабилистам, разработчикам интерфейсов, а не к маркетологов.
Второй практический вывод — это уже о бюджетах. Идеальной рекламной кампании в природе не встречается, но всем бы её хотелось. Запустить бы рекламную кампанию и ежедневно привлекать на сервис новых людей в одинаковом количестве и чтобы каждый из них настолько в него влюблялся, что остается пользователем навсегда.
На практике, в лучшем случае происходит так, как нарисовано синей кривой и любой рекламист это хорошо знает. Запустили интернет-кампанию, у вас есть некое нарастание, а как только кампанию завершили, посещаемость начала падать. В идеале — не до той величины, которая была до рекламы. Хотя в жизни, к сожалению, очень и очень часто падает в точности туда же.
Но даже если цифры относительно реалистичные, то у вас будет пятипроцентная конверсия посетителей в лояльных пользователей. Даже если у вас какое-то такое осмысленно время оттока, то на графике отличия от бесконечной лояльности будут катастрофическими. Еще очень важно, что вы можете, аппроксимируя по первым пяти-шести точкам начальной части синей кривой, предсказать что будет в итоге. Это всё та же история с двумя экспонентами: вы можете аппроксимировать это начало кривой и увидеть по первым пяти-шести периодам времени, что у доля лояльных пользователей составляет те самые 5%. Это позволяет сразу принять решение — устраивает вас рекламная кампания, приносящая определённый приток пользователей. В противном случае нужно сразу думать о том, как быстренько задержать тех посетителей, которые заходят на два-три раза.
Бывает, большое количество денег вкладывается в маркетинг (под маркетингом в данном случае подразумевается привлечение пользователей), и вы понимаете, что они расходуются неправильно. Чтобы донести это до начальства как можно проще, можно использовать что-нибудь вроде вот такой упрощённой таблицы. С научной точки зрения в ней много мелких ошибок, зато она простая.
Предположим, что рекламной кампанией можно привлечь десять тысяч пользователей. Будем считать, что мы уже провели все анализы, знаем, где и как будем размещать баннеры и каким будет количество показов. Более того, мы знаем, что с пользователя мы получим 100 рублей (не важно с каких его действий — покупок, просмотров рекламы на сайте и т.д.). Также мы знаем (поскольку неоднократно проводим рекламные компании), что цена привлечения пользователя — порядка 90 рублей. Из них 5% останутся примерно на год, 95% — примерно на месяц (здесь я очень сильно огрубляю до «лояльных» и «нелояльных»). Эти 5% лояльных за год дадут нам 600 тысяч. Но доля «короткоживущих», поскольку их очень много, даст нам за месяц 950 тысяч, итого мы эти полтора миллиона заработали, потратили 900. Отлично -мы заработали, больше чем поллимона.
Вообще, если вы в ходе каких-либо тестов понимаете, что играясь с интерфейсом и контентом, можете поднять долю лояльных пользователей (иногда прибавка составляет процентов пятнадцать), то тогда такая же рекламная кампания дала бы совершенно другой эффект. Вышло бы не 500, а 1500 человек, которые остались бы с нами на весь год и они дали бы нам 1800000 рублей, а чуть меньшее количество «короткоживущих» дало бы нам 850 тысяч. Заработок составит 1750000 тысяч. Те изменения, за счет которых можно втрое (с 5 до 15%) увеличить долю лояльных пользователей, обойдутся нам точно дешевле миллиона. Это серьезный аргумент.
Лояльность пользователя для любого сервиса отражается в совершенно конкретных деньгах. Понятно, что и для магазина и для рекламного сервиса можно идти дальше и делать такие модельки для отдельных сегментов пользователей. Однако для интегрального расчета годится такая предельно огрубленная, но вполне наглядная табличка.
Вот ещё интересная формула. Она про то, что каждый следующий месяц — это аудитория предыдущего месяца, умноженная на единичку минус «утекшие» пользователи, плюс некое n, обозначающее число пользователей, которых вы откуда-то привели.
Эти новые пользователи бывают «самоходные», бывают и «рекламные». Если они рекламные, то за них надо платить, если они самоходные, то это прекрасно. Это на самом деле самое лучшее, что может случиться с сервисом — когда эта величина больше нуля, это настоящий хороший вирус: люди рассказывают друг другу о сервисе. Когда это начинает работать, вы получаете колоссальный естественный приток посетителей.
Churn rate, который стоит первым слагаемым — это некий максимальный churn rate, который вы когда-то мерили, плюс некий коэффициент меньший единицы, который вы, как специалист по юзабилити, должны знать, как уменьшить.
Понятно, что до нуля вы churn rate никогда не сведёте, но вы можете уменьшить его и тем самым увеличите первое слагаемое в формуле. Это, на самом деле, как раз то, что стоит денег, то что является этим G, которое зависит от свойств сайта и F (рекламные расходы), оба являются расходами компании. Во что вложить деньги — в работу юзабилистов и программистов или рекламную кампанию — это уже вопрос правильного бюджетирования.
И последнее. Если уж совсем просто говорить: ребята, вы собираетесь заливать на сайт дорогостоящее вино (или хорошо очищенную водичку) в виде пользователей, покупаемых с помощью рекламы. Заткните все лишние дырки. Дырки, конечно, всегда будут, и какая-то вода будет испаряться. Но хотя бы лишние дырки выявите и заткните. Это как раз задача юзабилистов.
Интервью
Антон Войтишек (ИВМиМГ СО РАН) о случайных и псевдослучайных числах
В криптографии секретные коды представляют собой хаотические наборы (последовательности)