Склонившись над чертежом, ребята пристально вглядывались в фигуру.

— Ой, — закричал Нулик, — что я заметил! Внутри звезды ещё пятиугольник, а в нём ещё звезда. И так без конца…

— А если б ты был ещё внимательней, — сказала Таня, — то заметил бы, что диагонали большого пятиугольника делят угол при его вершинах на три угла, каждый из которых равен 36 градусам.

— Выходит, угол при вершине пятиугольника равен 108 градусам, — подсчитал Нулик.

— А сумма пяти углов звезды — 180, — сообразил Сева. — Совсем как у треугольника. Действительно замечательная фигура!

— Это что! — возразила Таня. — Самое замечательное свойство звезды впереди. Рассмотрим какую- нибудь из её сторон, то есть диагональ пятиугольника, — вот хотя бы диагональ AD. Диагональ эту в точке m пересекает другая, EB, которая делит AD на две части: меньшую Am и бо́льшую mD.

Нулик вопросительно вскинул брови: — Ну и что?

— А то, что меньший отрезок Am так относится к большему mD, как этот больший сам относится ко всей стороне AD.

Am: mD = mD: AD.

— Но отсюда вытекает, что mD2=Am*AD, — подсчитал Сева, — то есть больший отрезок стороны есть среднее геометрическое между всей стороной и её меньшей частью.

— Очень хорошо, — одобрила Таня. — Это и называется разделить сторону AD в среднем и крайнем отношениях. Сева хлопнул себя по лбу:

— Так вот о чём говорила Единичка! Только при чём здесь всё-таки золото?

— А при том, что такое деление Пифагор и его последователи называли золотым делением или золотым сечением.

— Такую пропорцию называли ещё божественной, — добавил Олег.

— Как раз об этом я и хотела сказать. Древние широко использовали божественную пропорцию в искусстве. Они проверяли ею красоту человеческого тела и признавали его идеальным лишь тогда, когда соотношения отдельных его частей подчинялись закону золотого сечения.

Таня извлекла из портфеля фотографию, испещрённую горизонтальными линиями.

— Вот статуя Аполлона Бельведерского, который, как известно, считается идеалом человеческой красоты. Все пропорции этой фигуры, все её соотношения, строго соответствуют золотому сечению: верхняя и нижняя части торса, ноги, руки…

— Чего нельзя сказать о Магистре, — сокрушённо вздохнул Сева. — Единичке очень не понравились его пропорции. Видно, далеко ему до Аполлона…

— Да и тебе не близко, — сказала Таня, критически оглядев Севу.

— Золотому сечению соответствовали и пропорции греческих зданий, — торопливо сказал Олег, чтобы прекратить неприятную пикировку. — Оттого они и до сих пор остаются для нас образцом красоты и гармонии.

— И все это придумал Пифагор, — заключил Нулик. — Силён!

— Пифагор, конечно, силён, — подтвердил я, — но справедливости ради надо сказать, что золотое сечение было известно ещё в Древнем Вавилоне. Да и вообще правило это выдумано не человеком, а самой природой. Пифагор только подметил его. И здесь время вспомнить о засушенной веточке, которую так расхваливала Единичка.

— У-у-у, — протянул Нулик, — а я думал, она это просто так…

— Пора бы уже заметить, что Единичка ничего не говорит просто так. Посмотрите-ка на эту веточку. Нет, это не Единичкина, а моя. Но взгляните, как расположены на ней листья. Попробуйте измерить расстояния между ними.

Сева порылся в кармане (а там чего-чего только нет!), извлёк сантиметр и принялся за измерение.

— Между первым листом и третьим, считая снизу, — 20 миллиметров, между первым и вторым — 12,5.

— Неточно, — сказал Нулик, ревниво следивший за операцией. — 12,36 миллиметра, а не 12,5.

Я похвалил Нулика за педантичность и предложил установить, в какой пропорции второй лист делит расстояние между первым и третьим.

— Минуточку! — Сева вынул карандаш и блокнот. — 20 минус 12,36 — это 7,64. Таково расстояние между вторым и третьим листьями. Значит, 7,64 так относится к 12,36, как 12,36 относится к 20.

7,64:12,36 = 12,36:20.

— Но это и есть золотая пропорция! — подытожил я. — Ведь отношение верхнего деления к нижнему равно здесь отношению нижнего деления к общему расстоянию между крайними листьями. Как видите, природа — отличный художник. У неё верный глазомер и тонкое чувство гармонии.

— Ну, это ещё надо проверить! — изрёк Нулик (этого хлебом не корми — дай ему попроверять!).

— Проверяй, кто ж тебе мешает.

— Легко сказать, а как?

— Эх ты, Фома неверующий! Перемножь крайние и средние члены пропорции и увидишь, что оба произведения одинаковы.

— Действительно, — степенно процедил Нулик, поколдовав над клочком бумаги. — 7,64, умноженное на 20, равно 152,8. И 12,36, умноженные на 12,36, — это тоже 152,8. Природа, оказывается, не глупее Пифагора…

При этих словах все невольно обернулись к окну да так и ахнули:

— Снег! Первый снег!..

Вот тут и залаял Пончик. Он сразу понял, что произошло нечто удивительно радостное, и через мгновение вместе с другими членами клуба был уже во дворе.

Видимо, снег ему понравился: попробовав его на вкус, он удовлетворённо фыркнул и принялся энергично разгребать передними лапами.

— Смотрите-ка, — хохотал Нулик, — Пончик занялся археологическими раскопками.

Олег воспользовался этим обстоятельством по-своему:

— Умный пёс! Это он намекает, что пора спуститься вслед за Магистром в пещеру, где собраны разные окаменелости.

Президент втянул голову в плечи.

— В таком случае, берегите лбы, а то расшибётесь об эти… как их там… столо… стило…

— Только не называй их, как Магистр, сталагми́тами. Вернее всего, в пещере были сталакти́ты — ведь они свисали с высокого свода, как сосульки с крыши. А сталагмиты, наоборот, поднимаются снизу вверх.

— Сталактиты, сталагмиты… Не все ли равно, обо что расшибаться. Шишка так и так вскочит! — философски заметил Нулик. — Лучше скажи, чей всё-таки череп попался Магистру: андертальца или не андертальца?

Таня всплеснула руками:

— Ну и невежда! Пора бы уж знать, что неандерталец — не два, а одно слово. И появилось оно в прошлом веке, когда в Германии, в Неа́ндертале — в долине реки Неа́ндер, — был найден череп первочеловека. Что же касается андертальцев, то они существуют только в воображении Магистра…

— И ещё не мешает тебе знать, — продолжил Сева, — что учёные считают неандертальца, то есть первочеловека, переходным звеном между питека́нтропом (иначе говоря, обезьяночеловеком) и человеком нынешним, так сказать, нашего образца…

— Ага! — воодушевился Нулик, но тут же задумался. — А ведь Магистр утверждал, что эти самые люди нашего образца жили уже миллионы лет назад, в самом конце четвёртого периода…

— Не четвёртого, а четвертичного, — поправил его Олег.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату