реактивного двигателя, считает, что решение задачи космических сообщений явится логическим развитием сегодняшней скоростной авиации. Постепенный рост скоростей и высот, достигнутых человеком, приведет к созданию сначала сверхвысотных самолетов, способных летать в ионосфере, затем — искусственного спутника, а после этого и к созданию аппарата, который сможет совершить полет к Луне или даже к Марсу.

С этим утверждением можно согласиться только отчасти. Космический полет по самой своей сути принципиально отличается от полета в атмосфере Земли. Космическим полетом называется полет, при котором созданный человеком аппарат движется вне атмосферы под влиянием сил двоякого рода: во- первых, сил инерции, сообщенных аппарату работой реактивных двигателей, во-вторых, сил всемирного тяготения. Современные летательные аппараты всегда в большей или меньшей степени используют для полета атмосферу, как аэропланы, или испытывают сопротивление воздуха, как высотные ракеты. Поэтому все эти полеты принципиально отличаются от полета космического.

Поэтому и нельзя ожидать постепенного перерастания авиации атмосферной в авиацию космическую. Пути развития той и другой по временам сближались, перекрещивались, но уже сегодня разошлись, и чем дальше, тем больше будут расходиться. Генеалогическую линию самолета надо начинать с идей Леонардо да Винчи и модели вертолета М. В. Ломоносова, проводить через аэродинамические исследования Н. Е. Жуковского, через реальные конструкции турбомоторных и реактивных самолетов вплоть до сегодняшних сверхзвуковых машин.

Развитие же космического корабля начинается с пороховой ракеты — всем известной игрушки, изобретенной в Китае в незапамятные времена — проходит через работы К. Э. Циолковского и ведет через сегодняшние составные жидкостные ракеты, которые уже далеко перекрыли достижения авиации и по скорости и по высоте полета и которые нельзя считать логическим развитием авиации. Видимо, эти ракетные аппараты и явятся прямыми предками грядущих космических кораблей.

Вместе с тем было бы неправильно считать, что развитие авиации не способствовало развитию высотной ракетной техники, что авиация не осуществила своим опытом разведку полета вообще, что целым рядом интереснейших технических решений, найденных в авиации, не пользуются конструкторы высотных ракет и не воспользуются конструкторы космических кораблей. И в этом плане развитие авиации, ее современное состояние и главным образом современное состояние реактивного двигателя, принятого на вооружение современной авиацией, не может не представить огромного интереса для астронавтики.

Авиация и астронавтика — родственные области науки и техники. Было время, когда развитие первой подготовляло путь для второй; настанет время, когда вторая поделится своими достижениями с первой и поможет ее дальнейшему развитию.

Развитие авиации было стремительным, торжество ее — беспримерным в истории. Ни одна отрасль науки и техники никогда до этого не развивалась с такой быстротой и размахом.

За кратчайший исторический срок в авиации сменился целый ряд двигателей. Первые изобретатели пытались ставить на свои самолеты паровую машину. Ее скоро сменил двигатель внутреннего сгорания, достигший значительного совершенства. В последнее десятилетие он был вытеснен со скоростных самолетов реактивным двигателем. А в настоящее время в ряде стран ведутся работы по использованию в качестве самолетного двигателя атомного реактора.

Соответственно изменялась и предельная высота полета — так называемый «потолок» самолета.

Семейство реактивных двигателей (снизу вверх): 1 — пороховые ракеты и сегодня применяющиеся как дополнительные двигатели при взлете тяжело нагруженных воздушных кораблей. 2 — турбокомпрессорный реактивный двигатель — самый распространенный двигатель современной скоростной авиации. Встречный воздух сжимается компрессором а; в него в камере сгорания б впрыскивается горючее; газы горения вращают турбину в и, вылетая через сопло г, создают реактивную силу. 3 — в прямоточном реактивном двигателе встречный воздух, пройдя решетку а, попадает в камеру сгорания б, и газы горения выбрасываются через сопло в. 4 — жидкостный реактивный двигатель — двигатель будущих космических кораблей. Горючее а и окислитель б подаются турбонасосами в в смесительную камеру г. Горючая смесь сгорает в камере д, и газы горения вырываются в сопло е. Для привода турбонасоса используется перекись водорода ж.

Первые самолеты летали очень низко над землей — высота их подъема едва достигала нескольких десятков метров. К 1920 году «потолок» самолета поднялся до 4000 метров. Сегодня он превзошел 18 тыс. метров, хотя серийные самолеты, как правило, и не поднимаются на такую высоту.

История авиации — это в значительной степени история борьбы за скорость и высоту полета.

Первые самолеты имели скорость 40–50 километров в час, и это казалось тогда стремительным полетом. Всего 45 лет назад она не превышала 80 километров в час, а сегодня зарегистрированным рекордом скорости самолета является 1215 километров в час! Эта скорость почти равна скорости звука. Нерегистрируемые скорости на пикировании в высотных слоях атмосферы значительно превосходят и эту официальную скорость. Скорости же в 1100, 1200 километров в час стали обычными скоростями серийных скоростных самолетов.

Исследователи истории авиации начертили по годам кривую роста скоростей самолета. И вот оказалось, что получилась не плавная линия, на которой год за годом происходил рост скоростей на определенную величину, а волнистая линия с участками крутого роста, сменяемыми участками почти горизонтальными — роста скорости не происходило.

Ученые сопоставили эти участки крутого подъема с появившимися в те годы конструкциями самолетов, и оказалось, что они совпадали с моментом, когда в конструкцию самолета вводилось какое-либо серьезное техническое новшество.

Так, в 20-х годах быстрый рост скоростей самолетов объясняется переходом от тонкого крыла к толстому, в котором можно было спрятать шасси с колесами, что в значительной степени уменьшало сопротивление самолету потока воздуха. Следующий скачкообразный рост скоростей в первой половине 30-х годов совпадает с введением наддува в цилиндры двигателя. До этого двигатель вынужден был «дышать» забортным воздухом, который чем выше, тем становился разреженнее. Двигатель «задыхался» в этом разреженном воздухе, терял мощность. И самолет не мог использовать из-за этого преимуществ, даваемых уменьшившимся сопротивлением воздуха.

Боевые пороховые ракеты — близкие родственники осветительных ракет — были могучим оружием советских летчиков в борьбе против фашистских оккупантов.

Введение наддува обеспечило двигателю самолета возможность и в разреженных слоях атмосферы «дышать» уплотненным воздухом. И скорость самолета повысилась на добрых 150–200 километров в час.

Но самый большой и резкий скачок кривой роста скоростей самолетов произошел где-то около 1945 года. Это в авиацию пришел реактивный двигатель. Скорость самолета поднялась на 250–300 километров в час. Замена поршневого двигателя на самолете реактивным двигателем была подлинной технической революцией. Вместе с тем это момент, когда линии развития авиации и астронавтики сблизились и пересеклись, взаимно обогащая друг друга.

Первое и основное преимущество реактивного двигателя перед поршневым состояло в чрезвычайно высокой мощности при небольшом весе. Борьба за снижение «удельного веса» авиационного двигателя — снижение веса двигателя на единицу развиваемой мощности — велась очень давно. Если в 1910 году «вес 1 лошадиной силы» составлял свыше 2,5 килограмма, то к 1950 году — за 40 лет — он упал до 0,4

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату