прослышали о событиях того вечера, но воздержались от публикации каких-либо сообщений на эту тему, считая всю историю безвкусной стряпней некоего Фанштиля, пресс-агента клуба «Пурпурные шляпы».
Симпсон отделался легко, но у Сляпенарского оказался перелом челюсти. Я отвез его в госпиталь Биллингс, что неподалеку от университета, и в больничной палате далеко за полночь услышал от Сляпенарского о том, что, по его мнению, произошло. Симпсон, по-видимому, оказался заброшенным в более высокое (скорее всего в пятое) измерение, но проник туда не глубоко и попал в какую-то низину.
Придя в себя, он расцепил себе руки и тотчас же превратился в обычный трехмерный тор с наружной и внутренней поверхностями. Сляпенарскому повезло меньше. Он приземлился на какой-то склон. Вокруг ничего не было видно, со всех сторон, куда ни глянь, был неразличимый туман, но Сляпенарский отчетливо запомнил ощущение, будто он скатывается по склону холма.
Он пытался все время держаться за нос, но выпустил кончик носа до того, как достиг конца склона, и вернулся в трехмерное пространство, прервав своим появлением выступление Долорес.
Так ли было на самом деле, не знаю. Во всяком случае, таким представлялся ход событий Сляпенарскому.
Несколько недель он пробыл в госпитале, запретив пускать к себе посетителей, и я увидел его только в день выписки, когда проводил его на вокзал. Сляпенарский уехал поездом в Нью-Йорк, и с тех пор я его не видел. Через несколько месяцев он скончался от сердечного приступа. Профессор Симпсон вступил в переписку с вдовой профессора Сляпенарского в надежде разыскать хотя бы черновики работ своего покойного коллеги по теории нульсторонних поверхностей.
Сумеют ли топологи разобраться в черновиках Сляпенарского (разумеется, если их удастся найти), покажет будущее. Мы извели массу бумаги, но пока что нам удавалось построить только обычные двусторонние и односторонние поверхности. Хотя я помогал Сляпенарскому «складываться» в нульстороннюю поверхность, чрезмерное волнение стерло из моей памяти все детали.
Но я никогда не забуду замечание, которое обронил великий тополог в тот памятный вечер перед моим уходом.
- Счастье, - сказал он, - что Симпсон и я успели перед возвращением освободить правую руку.
- А что могло бы случиться? - спросил я недоумевающе.
Сляпенарский поежился.
- Мы бы вывернулись наизнанку, - сказал он.
ОСТРОВ ПЯТИ КРАСОК
В Монровии, столице Либерии, есть только один магазин москательных товаров. Когда я сказал темнокожему клерку, сколько галлонов краски мне нужно, он поднял в удивлении кустистые брови и присвистнул:
- Не иначе, как вы собрались выкрасить гору, мистер!
- Нет, - заверил я его, - не гору, всего лишь остров.
Клерк улыбнулся. Он думал, что я шучу, но я действительно собирался выкрасить целый остров в пять цветов: красный, синий, зеленый, желтый и пурпурный.
Для чего мне это понадобилось? Чтобы ответить на этот вопрос, мне придется вернуться на несколько лет назад и объяснить, почему я заинтересовался проблемой «четырех красок» - знаменитой, тогда еще не решенной проблемой топологии. В 1947 г. профессор Венского университета Станислав Сляпенарский прочитал в Чикагском университете цикл лекций по топологии и теории относительности. Я в то время был преподавателем математического факультета Чикагского университета (теперь я уже доцент). Мы подружились, и мне выпала честь представить его членам общества «Мёбиус» в тот вечер, когда он прочитал свою сенсационную лекцию о «нульсторонних поверхностях». Читатели, следившие за научными достижениями Сляпенарского, должно быть, помнят, что он вскоре после этого скончался от сердечного приступа в начале 1948 г.
Проблема четырех красок была темой моей докторской диссертации. Еще до визита Сляпенарского в США мы обменялись с ним несколькими письмами, обсуждая различные аспекты этой трудной проблемы. Гипотеза о четырех красках утверждает, что для правильной раскраски любой карты (при которой любые две сопредельные страны, имеющие общий отрезок границы, будут выкрашены в различные цвета, и две страны не считаются сопредельными, если их границы имеют лишь одну общую точку) достаточно четырех красок. Страны на карте могут быть любых размеров и самых причудливых очертаний. Число их также может быть произвольным. Гипотеза четырех красок была впервые высказана одним из создателей топологии, Мёбиусом, в 1860 г., и, хотя над решением ее бились лучшие умы в математике, ее не удавалось ни доказать, ни опровергнуть.
По странному стечению обстоятельств проблема четырех красок была решена для всех поверхностей, кроме сферы и плоскости. В 1890 г. Р. Дж. Хивуд доказал, что для раскраски поверхности тора (поверхности бублика) необходимо и достаточно семи красок, а в 1934 г. Филипп Франклин доказал, что шести красок достаточно для раскраски карт на односторонних поверхностях типа листа Мёбиуса и бутылки Клейна.
Открытие Сляпенарским нульсторонних поверхностей возымело далеко идущие последствия для изучения свойств бутылки Клейна и произвело подлинный переворот в исследованиях по проблеме четырех красок. Как сейчас вижу мощную фигуру Сляпенарского, который, улыбаясь и теребя бородку, говорит: «Дорогой Мартин, если история топологии чему-нибудь и учит, то только тому, что следует ожидать самых неожиданных и удивительных связей между, казалось бы, совершенно не связанными между собой топологическими проблемами».
Развивая некоторые идеи Сляпенарского, я опубликовал в 1950 г. свою известную работу с опровержением «доказательства» Хивуда (полагавшего, что для правильной раскраски карты плоскости необходимо и достаточно пяти красок) По всеобщему убеждению топологов, для правильной раскраски плоскости или сферы достаточно четырех красок, но в свете новейших достижений становится ясно, что от строгого доказательства такого утверждения мы в настоящее время находимся дальше, чем когда- либо.
Вскоре после выхода в свет моей работы по проблеме четырех красок мне довелось завтракать в университетском клубе «Четырехугольник» с профессором Альмой Буш. Альма - один из ведущих наших антропологов и, несомненно, самая красивая женщина во всем университете. Хотя ей уже под сорок, выглядит она молодо и весьма женственна Глаза у нее светло-серые, и когда Альма о чем-то думает, то имеет обыкновение чуть-чуть их щурить.
Альма только что вернулась из экспедиции на небольшой остров, расположенный в нескольких сотнях миль от побережья Либерии у западной кромки африканского материка. Она возглавляла группу студентов- антропологов, изучавших нравы и обычаи пяти племен, населявших остров. Племена эти представляли огромный интерес для антрополога, так как их обычаи варьировались в необычайно широких пределах.
- Остров разделен на пять областей, - сообщила мне Альма, вставляя сигарету в длинный мундштук из черной пластмассы.
- Все они граничат друг с другом. Это важно для понимания тамошних нравов. Общность границ позволяет племенам поддерживать некое единство культур. Что с тобой, Марти? Почему у тебя такой изумленный вид?
Я застыл, так и не донеся вилку до рта, и медленно положил ее на стол.
- Потому, что ты рассказываешь невероятные вещи. Такого просто не может быть.
Альма была уязвлена:
- Чего не может быть?
- Пяти племен, имеющих общие границы. Это противоречит знаменитой проблеме четырех красок.
- Противоречит чему?