нужна достаточная тяга, величина которой напрямую зависела от величины эжектируемого воздуха

Близкую задачу в 1920 году пришлось решать французскому инженеру Х. Ф. Мело. Он изобрел керосиновый двигатель реактивного действия и производил с ним опыты. Схема двигателя Мело (рис. 11) включала в себя каскад из четырех эжектирующих атмосферный воздух насадок.

Рис. 11. Двигатель Х. Ф. Мело. 1 — трубки с отверстиями; 2 — взрывная камера; 3 — профильные направляющие дефлекторы; 4 — насадки; 5 — центральная струя газов из взрывной камеры; 6 — струи газов из отверстий трубок; F — воздушный поток атмосферного воздуха, увлекаемого струями газов (6), а в полете — напор набегающего воздуха

Впрыснутую во взрывную камеру (п. 2) удлиненной формы смесь керосина с воздухом он воспламенял электрической искрой. Продукты сгорания за счет взрывной силы вырывались через центральное отверстие с большой скоростью и проходили через каскад (п. 4) насадок, эжектируя воздух. Чтобы дополнительно повысить тягу, впридачу к насадкам перед ними были установлены два кольцевых профильных дефлектора (п. 3). Из взрывной камеры он вывел кольцевые трубки (п. 6) с отверстиями и установил их перед кольцевыми дефлекторами. При взрыве в камере из отверстий трубок тоже вырывались газы. Они с определенной скоростью увлекали за собой в дефлекторы окружающий воздух. Дефлекторы, в свою очередь, формировали направление движения скоростного потока и подводили его к насадкам с целью увеличения ими приема дополнительной массы эжектируемого воздуха. В дальнейшем свою работу Мело сосредоточил на усовершенствовании первичного (рис. 12) генератора газов, ибо топливно-воздушный компрессор и система зажигания оказались громоздкими.

Рис. 12. Двигатель Мело реактивного действия с двухтактным двигателем

Вместо взрывной камеры он установил двухтактный двигатель внутреннего сгорания со свободно движущимся поршнем. В горизонтальном цилиндре поршень ходил взад и вперед. В крайнем левом положении карбюратор подавал топливную смесь зажиганием, которая активизировалась от электрической свечи. Поршень начинал двигаться вправо, сжимая новую порцию топливной смеси, которая самовоспламенялась от давления сжатия. Принудительного сжатия и искры зажигания больше не требовалось. Газы пульсирующим потоком шли в сборную выхлопную трубу, а затем к насадкам. При опытах двигатель создавал тягу 75 кг/16/. Мело предполагал устанавливать этот двигатель на самолетах. В этом случае дефлекторы независимо от струй газов из трубок захватывали бы и формировали поток встречного воздуха и отсылали дополнительную его порцию к эжектирующим насадкам. На рисунке 13 представлена так называемая стела Раймонди из музея антропологии в Лиме, найденная в Чавин де Хуантар. На прорисовке автором убраны детали, которые своими замысловатыми узорами отвлекают внимание от существа разбираемого вопроса — механики обеспечения поступления достаточного количества эжектируемого атмосферного воздуха в момент взлета древнего летательного аппарата. Обратим внимание на изображение химеры или, как ее называют ученые, фигуру «человека-ягуара». В каждой руке, по их мнению, он держит по «скипетру» или «посоху причудливой формы». Как это ни покажется странным, но «посохи» (рис. 13, п. 3) и кольцевые трубки с отверстиями на двигателе Мело (рис 12, п. 1) выполняют сходные функции. «Посохи» — это боковые трубопроводы для транспортировки паров ртути от котла к «розеточкам» — ряду древних дефлекторов. Истекая из боковых направляющих трубопроводов, паровые струи многократно увлекают за собой окружающий воздух к зевам дефлекторов. В свою очередь, дефлекторы по своим каналам доставляют захваченные потоки воздуха к каскаду «сопел Лаваля». Судя по обилию змеек-стрелок, которые символизируют направление движения газовых струй в каскаде «сопел Лаваля» и прилегающих к ним дефлекторов, эжекция воздуха к соплам Лаваля повторяется многократно. Проследим маршруты паров ртути и их смесей с воздухом, используя возможности, которые предоставляет нам прорисовка стелы Раймонди. Характерно, что диаметр сопла на выходе из древней эжекторной камеры приблизительно в 52 раза больше по площади суммарного диаметра X, трубопроводов, по которым пары ртути подводятся из котла в эжекторную камеру. В какой-то мере этот момент дает некоторое представление об эффективности эжекторной камеры Раймонди для увеличения массы газов, истекающих из эжекторной камеры в атмосферу и, соответственно, о мере увеличения потребной для взлета тяги. Чего, собственно, и добивались древние умельцы.

Рис. 13. «Эжекторная камера», или «Двигатель Мело», древности. 1 — котел для нагрева ртути; 2 — трубопроводы отвода паров ртути из котла в боковые направляющие; 3 — боковые направляющие паров ртути с соплами в лапах химеры — аналоги трубки с отверстиями взрывной камеры Мело; 4 — дефлекторы эжекторной камеры; X — направление движения паров ртути из котла; Xt — относительный внутренний диаметр трубок-сопел боковых направляющих и центральной направляющей; F — эжектируемый атмосферный воздух; 52 Xt — относительный диаметр сопла эжекторной камеры на выходе; С — направление движения паров ртути в центральной направляющей эжекторной камеры; К, Z — потоки паров ртути, которые наподобие струй газов из отверстий трубок двигателя Мело увлекали за собой в дефлекторы окружающий воздух

Из котла 1 пары ртути под давлением поступают по центральному отверстию эжекторной камеры — поток С, а по отводам 2 в боковые направляющие 3 — потоки X. Эти потоки X затем формируются в скоростные потоки К и Z. Эти потоки наподобие струй газов из отверстий трубок (см. рис. 11, п. 6) в двигателе Мело при работе взрывной камеры 2 увлекают за собой воздух в дефлекторы эжекторной камеры (рис. 13, п. 4).

Теорию реактивной паровой ртутной струи применительно к летательным аппаратам, естественно, никто не изучал и изучать не будет — ртуть вещество ядовитое. Масштабы увеличения тяги в результате использования на летательных аппаратах «эжекторной камеры», разработанной древними мудрецами, определить тоже не представляется возможным. На каменных стелах нет текстового материала, который бы трактовал постулаты древней термодинамики. Однако одна зацепка все же имеется. По Д. Саттону, из практики ракетостроения известно, что если давление в камере сгорания ракетного двигателя окажется ниже 2,25 кг/см2, то появляется реальная опасность, что сверхзвуковое истечение газа в расширяющейся части сопла не возникнет/17/. В этом случае работа проектантов ракеты пойдет насмарку. Возникала ли подобная проблема перед древними разработчиками? Переадресуем им этот тест. На аэрофуге, как мы помним, в четырех котлах с регулируемым подогревом вырабатывали перегретые пары ртути, которые направляли «по трубам» как для организации «несущего вихря», так и для создания условий горизонтального полета. «Трубы» в числе четырех штук смотрели вниз под углом около 40° к вертикальной оси аппарата При посадке и при взлете они помогали зависать над землей и в какой-то мере смягчали посадку, чем и обеспечивали безопасность полета. По справочным данным, при температуре 387,78 °C давление паров ртути в котле составит 1,76 кг/см2 (0,176 мПа). Для достижения условий получения звуковой скорости в горловине сопла по теории и опыту работ современных ракетных двигателей требуется иметь давление на входе в сопло выше 2,25 кг/см2 (0,225 мПа). При температуре 409,44 °C давление паров в котлах достигнет 2,46 кг/см2 (0,246 мПа). Этот небольшой запас

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату