Изготовление одного и того же прибора на разном сочетании этих и других технологий – сегодня не исключение. Принцип взаимозаменяемости требует производства таких микромодулей, на базе которых в любом случае можно было бы собрать новый функциональный узел с помощью небольшого присоединения других радиоэлектронных компонентов (подстроечные и постоянные конденсаторы, резисторы). Например, множество плат с БИС (большие интегральные схемы), ОУ (операционные усилители) и прочее могли бы быть примером сказанному.
Но может случиться так, что все эти подстроеч-ные элементы в них уже содержатся.
Достоинством технологий тонких пленок является то, что из-за плоской формы радиодеталей улучшается степень охлаждения, которая позволяет увеличить мощности потребления. Однако такое достоинство осложняется компоновкой миниатюрных радиоэлектронных устройств. Компоненты становятся недоступными. В конечном счете достоинства оказываются большими, чем издержки в миниатюризации. Следовательно, тенденция остается перспективной.
Современное название этой технологии – наноэлект-роника, нанотехнология.
Сперва нанотехнология (н/т) привлекала к себе внимание конструкторов из-за лучшей возможности рассеяния изменной мощности; затем открылись совсем другие, неожиданные формы ее применения.
Сложилась так, что в РЭА подстроечные компоненты (резисторы, конденсаторы) устанавливают на краях (в конце) модулей; в микроэлектронике конденсаторы с емкостью >60 пф не применяются. Остальные части микромодуля присоединяются к подстроечным. После, весь модуль экранируют и заливают эпоксидом, оставляя доступы к подстроечным.
На плате микромодули устанавливают, исходя из конкретных потребностей. Тонкие покрытия (порядка размеров молекул) получаются путем вакуумного испарения. Этот медот (метод вакуумного испарения) позволяет «выращивать», – по атомам и молекулам, – не только сопротивлений, конденсаторов, но и индуктивности, селеповые выпрямители и прочих на-ноэлектронных деталей.
Однако, компонок таких деталей сложнее, чем установка на плате других деталей.
35. Элементы электронных цепей ИП
Зачем нужны электронные устройства в ИП (измерительных приборах)? Для самых различных целей: от усиления слабых сигналов датчиков до преобразования или генерирования сигналов самых различных форм и частоты.
При их изготовлении используют электровакуумные лампы и полупроводниковые приборы, такие, как диоды, триоды и прочие. Эти РЭУ (радиоэлектронные устройства) работают в основном в двух режимах:
1) в режиме большого сигнала, когда при изменении электрических параметров в диапазоне их изменения могут оказаться и нелинейные участки ВАХ (вольтамперная характеристика) приборов;
2) в режиме малого сигнала, когда в диапазоне изменения оказываются в основном линейные участки ВАХ.
Усилители. Основным критерием выбора являются классы усиления, а для этого исходят из энергетического баланса (КПД – коэффициент полезного действия), последний характеризуется коэффициентом использования прибора по мощности
где Pkmax– максимальная мощность нагрузки; P
Сами классы усиления характеризуются длительностью протекания тока в выходной цепи. Величину этой длительности называют углом отсечки. Если исходить из качественных характеристик классов усилителей, то они различаются в основном величиной нелинейных искажений. По мере перехода от класса А к классам В, С, D искажения увеличиваются.
Модуляторы служат для преобразования сигналов, независимо от скорости их изменения, в переменные, но такое преобразование требует наличия ряда условий:
1) амплитуда переменного напряжения U ~ UМГH – мгновенное значение напряжения сигнала;
2) частота U определяется модулятором, причем она равна частоте напряжения коммутации U
3) угол сдвига по фазе между U на выходе модулятора и Ukom изменяется, если изменить полярность напряжения сигнала.
В зависимости от величины и полярности Ukom, сопротивление в цепи, являющееся ключевым моментом модулятора, изменяется, и модулятор срабатывают. Эту цепь называют синхронным прерывателем. В зависимости от характера усиления по мощности, различают модуляторы пассивные, если происходит только модуляция без усиления мощности, и активные, если происходят оба процесса.
Демодуляторы, как видно из названия, служат для демодуляции (дешифрации) модулированного сигнала. При этом происходит преобразование переменного сигнала в форму, которая не является синусоидальной, поскольку содержит постоянную составляющую: мы ведем речь только о выходном сигнале.
Для работы модулятора без искажения требуется выполнение следующих условий:
1) постоянная составляющая выходного напряжения
– среднее выпрямленное напряжение;
2) частоты сигнала и коммутированного напряжения равны;
3) модуль |
36. Транзисторные переключающие устройства
Транзисторные переключающие устройства представляют собой усилители постоянного тока. Для их устойчивой работы и убыстрения переключений существует положительная обратная связь. Кроме того, эта устойчивость зависит от условий насыщения и запирания транзистора. При насыщении транзистора (р-п-р – переход) Uk>U?. Наряду с этим
где J?,Jk – ток базы и коллектора; RH,UH – сопротивление и напряжение нагрузки; В – параметр. При запирании транзистора (р-п-р)
где Jko – обратный ток коллекторного перехода.
На переходе коллектор-эмиттер для запертого транзистора:
Uкэ.доп = Uкб.доп – Uбэ,
где индекс «доп» – допустимое.
Режим J? = 0 является недопустимым, поскольку из-за Jk = (B + 1) Jko, напряжение Uкэ резко уменьшается и может произойти пробой транзистора.
Сглаживающие фильтры и стабилизаторы напряжения. Фильтры служат:
1) для приведения выпрямленного напряжения в непрерывный вид;
2) для нейтрализации дуг и искр, возникших в цепи при эксплуатации, например, при замыкании (размыкании) контактов;
3) для других целей, по замыслу конструктора. Фильтры, которые служат в источниках питания, характеризуются коэффициентом сглаживания:
где индексы п1, п2 указывают на величину пульсаций, соответственно, на входе и выходе.
Чтобы определить коэффициент пульсации, определяют отношение амплитуды I гармоники пульсации к амплитуде постоянного компонента входного напряжения.
Различают фильтры следующих типов: емкостные; индуктивно-емкостные (их называют также П- фильтрами); реостатно-емкостные (Г-фильтры).
37. Выбор фильтров: расчет необходимых параметров
Выбор фильтров зависит от замысла разработчика радиоэлектронного узла, а также от типа выпрямителей, которые различают от однополупериодных до мостовых. Если выбрать П-фильтр, то его элементы рассчитывают следующим образом:
где f – частота питающей сети; Rn – сопротивление нагрузки; С – емкость (конденсатор); Lдр– индуктивность дросселя в цепи; мкф