4) находим передаточные числа для каждой частной (первичной) ошибки и, если они случайные, определяем статистические характеристики
составляем сводную таблицу: для любого положения достаточно трех-пяти значений i
5) определив по таблице статистических характеристик ошибки положения механизма для нескольких положений ведущего звена, строим график (если приборы предназначены для абсолютного измерения).
Краткий алгоритм последовательности действий по обеспечению заданной точности:
1) выбираем схему (принципиальную);
2) по схеме определяем номинальные величины, при которых заданная точность содержит погрешность схемы, т. е. погрешности не превышают заданную точность;
3) выясняем место ошибок звеньев у механизма, выбираем число компенсаторов (регуляторов) и их местоположение, устанавливаем системы регулирования при сборке;
4) устанавливаем допуски на размеры звеньев механизма;
5) рассчитываем суммарную ошибку.
Последний пункт является решением уже обратной задачи теории точности.
23. Расчет точности электрических цепей приборов. Методы расчета
В электрических цепях механизмов в основном используют следующие элементы: сопротивления R; емкости С; индуктивности L; взаимные индуктивности М.
Параметры этих элементов не обязательно зависят от токов, которые протекают через них. В таком случае эти элементы называют линейными элементами. Ведущими в этих цепях являются элементы, величина которых может быть регулирована. Систематическая погрешность схемы называется структурной ошибкой, которая является аналогом ошибки схемы.
Разность между практическим и идеальным выходными напряжениями называют ошибкой цепи. Из-за ошибки цепи и выходных параметров возникает погрешность, которую называют ошибкой выходного напряжения.
Если при изменении выходных параметров на постоянную величину между UR и Uт образуется разность, то ее называют ошибкой изменения цепи по напряжению (или по току), где UR – выходноенапряжение реальной цепи, Uт – выходное напряжение идеальной цепи.
Если же (UR – Uт) возникает из-за ошибок цепи и входных параметров, то такую разность называют ошибкой изменения выходного напряжения.
Ошибку выходного напряжения AU, которая возникла из-за первичных ошибок, можно выразить через изменение параметра
?U = E х Тi ?qi,
где
В нашем случае погрешность ?qi может возникать из-за первичных ошибок, перечисленных выше.
Для вычисления ?U требуется знать коэффициент влияния
который выражает, в какой степени
первичные ошибки передались на выход через параметр ?qi и вызвали ошибку ?Ui. Для этого пользуются методом преобразованных цепей (другие методы громоздки по вычислению): выделив изучаемую ошибку, на ее месте образуют новую пару полюсов (закорачивают источник питания).
Только следует учесть, что ошибка ?Ui может быть внесена в результате, например, ошибки в монтаже схемы в виде утечки тока ?Аi. В этом случае определение коэффициента влияния Тi проводится также по формуле, путем простой замены Ri на Аi;, где ?Аi – омическая проводимость.
Коэффициента влияния работы электрической цепи в переходном режиме: здесь цепь содержит, кроме сопротивлений R, еще и реактивные элементы: емкость С, индуктивность L, взаимная индуктивность М.
Погрешности из статистических превращаются в динамические. Тем не менее, эти дифференциальные уравнения легко сводить к простым алгебраическим уравнениям: следовательно, для расчета коэффициента влияния в рассматриваемом режиме формулы остаются в силе.
24. Другие методы расчета точности электрических цепей приборов
1. Аналитический метод. В цепях, где есть реактивные элементы, рассматриваются реальные (не идеальные) цепи. Разница между ними – наличие погрешностей в реальных и отсутствие их в идеальных – приводит к осложнению уравнений для описания реальных цепей.
Метод Лапласа. Используется преобразованная цепь, и все параметры, входящие в формулу, подвергаются S-преобразованию. Для параметра qi, коэффициент влияния для погрешности:
В формуле ?ab?ef(S), gf?сd(S)? – функции передачи первичных ошибок в Uвых в расчетной и преобразованной цепях, соответственно. ?Uвх(S) – входное напряжение, qi(S) – сопротивление элемента q
Все параметры элементов q
L > SL,
Поскольку все сводится к преобразованию в линейный вид, то омическое сопротивление не преобразуется.
Находят коэффициент влияния в виде S-пре-образования T(s). Затем, согласно существующим таблицам, проводят обратные преобразования и получают коэффициент влияния как функцию от времени – Т(t).
2. Экспериментальный метод. В этом случае после цепей расчетной и преобразованной, соединенных последовательно, следует еще одна, так называемая операторная цепь. Изменяя входное напряжение и наблюдая за входными и выходными параметрами, составляют таблицу, строят график и оценивают точность в расчетной цепи. При необходимости вносят коррективы.
3. Вероятностный метод. Параметры выбранных цепей случайны. Как случайные величины, первичные ошибки состоят из случайных параметров и случайных функций.
Случайные параметры (первичные ошибки) во времени не изменяются. В противном случае, эти параметры называют случайными функциями. Разница в том, что в отдельно взятом механизме, случайный параметр изменяется только при переходе от одного к другому образцу.
25. Расчет точности пневматических КИП
Источники ошибок при измерениях могут быть следующего происхождения:
1) погрешности установочных калибров, температурные погрешности и другие, которые характерны для всех КИП;
2) нелинейность физических зависимостей в пневматических КИП (основной источник);
3) отсутствие жесткой фиксации положения в процессе измерения самого изделия, которое подвергается измерению;
4) особенности динамики измерения. Различают пневматические КИП двух основных типов: датчики давления и датчики расхода воздуха.
Номинальное передаточное (т. е. чувствительность прибора)
где а – интервал шкалы измерений; с – цена деления шкалы.
Чувствительность прибора для текущего момента (измерений),
При линейности L(S), текущее передаточное отношение
J = J0
Ошибку перемещения стрелки
?L = L
называют систематической ошибкой показаний ?.
Ошибка в показаниях ? рассматриваемого КИП зависит от других параметров того же прибора,