Если плоскостей несколько, то число первичных ошибок будет кратно трем: 3n, где n – количество плоскостей.

4. В случае, когда элемент кинематической пары имеет форму сферы, отклонения могут иметь радиус сферы по трем координатам в декартовой (XYZ) системе координат плюс радиус сферы по длине. Число первичных ошибок равно четырем, т. е. равно количеству параметров с возможными отклонениями.

5. Число первичных ошибок может дойти до 11, например элемент кинематической пары, состоящий из цилиндра и двух плоскостей. Поскольку для цилиндра (кругового) число первичных ошибок равно пяти.

6. Если цилиндр не круговой, то число первичных ошибок – шесть.

7. Если взять круговой конус, то число первичных ошибок – семь, для некругового – восемь. В случае усеченного кругового конуса также восемь.

Числа первичных ошибок элемента кинематической пары, суммируясь для каждого звена, в итоге составляют суммарное число первичных ошибок для всего механизма.

20. Исследование точности механизмов

В процессе исследования механизмов анализируются: причины возникновения ошибок, предполагаемые (ожидаемые) величины этих ошибок, методы контроля ошибок и поверки приборов. Все эти вопросы принадлежат метрологии, как неотъемлемой части производства и эксплуатации изделий в «Приборостроении».

Метрология. Основные понятия.

1. Действующая ошибка кинематической пары – так называют результирующая ошибка в формах, размерах элемента кинематической пары, которая проявляется непосредственно в процессе работы, ее невозможно фиксировать как постоянную величину, поскольку механизм работает непрерывно. Например, соприкасающиеся поверхности узлов заменяются другими, имеющими свои возможные отклонения от заданных, перемещение ведущего звена f(ц) является аргументом для функций закона распределения ошибок.

?F = f(?).

2. Линия действия – так называют линию, которая является общей нормалью к соприкасающимся рабочим поверхностям, нормаль проходит через точку касания поверхностей. Из-за отклонения параметров у элемента кинематической пары практическая линия действия отличается от теоретической (заданной), что является нередким явлением.

Взаимодействуя друг с другом в процессе эксплуатации, отдельные ошибки порождают комплексную ошибку, которая не подчиняется закону простого суммирования. Первичные ошибки рассматривают как частные случаи комплексной: при анализе комплексной (функциональной) ошибки ее раскладывают в ряд, состоящий из первичных ошибок. Этот метод помогает увидеть ошибки, допущенные в самом технологическом процессе, в разных его стадиях.

Производимые расчеты исходят от функциональной (т. е. практически существующей) ошибки узлов.

Методы анализа ошибок:

1) дифференциальный метод;

2) метод преобразованного механизма;

3) геометрический метод;

4) метод планов малых перемещений;

5) метод относительных ошибок;

6) метод плеча и линии действия.

Первые пять методов служат для анализа первичных ошибок.

Последний метод применяется для исследования функциональных действующих (т. е. комплексных) ошибок, причем является достаточно надежным.

Для перехода от комплексных ошибок к частным и наоборот существует специальная функция, которую называют передаточным отношением ошибок (ее нередко называют еще коэффициентом влияния).

21. Метод плеч и линия действия

Метод плеч и линий действия позволяет выявить все погрешности, приводящие к кинематической неточности прибора.

Погрешности делят на следующие группы:

1. ?Fr – так выделяют те избыточные приращения в общем плече, которые возникают из-за отклонений в подвижных звеньях механизма.

2. ?Fл.д. – так обозначают погрешности, которые возникают из-за ошибок на линии действий или на параллельных ей линиях.

3. ?Fн.э. – приращения (погрешности), являющиеся следствием ошибок у неподвижных звеньев механизма.

Общее приращение ?F?, как нетрудно себе представить, является суммой вышеперечисленных групп, то есть

?F? =?Fr + ?Fл.д. + ?Fн.э. Формула для расчета передачи ошибок:

где ?F2,?F1 – действия соответственно ведомого и ведущего звеньев,

i– линейное передаточное отношение между узлами,

r2, r1 – соответственно, радиусы точек, находящихся на рассматриваемых узлах. Не всегда совпадают линии движения ведомого звена и действия: они могут образовать некоторый угол б. В таком случае приращение на линии движения

где ?F? – общее избыточное приращение по линии действия;

– антипроекция AF на линии действия.

Ошибка для линейного углового положения звена:

где ?F? – общее избыточное давление;

??2, r02– изменение угла между двумя положениями и радиус точки у ведомого звена.

Ошибка линейного перемещения

?Snep = ?Sk – ?SH.

Для скорости:

22. Расчет точности механизмов. Обеспечение заданной точности

Цель вопроса – определить методику обеспечения заданной точности в партии из однородных механизмов. В пределах допусков требуется обеспечить заданную точность. Возможен разброс самых различных типов ошибок. Сложность ситуации в том что одни и те же ошибки могут влиять на точность механизма в конкретном случае, но те же ошибки в других случаях могут не сказаться на их точности. Такие ошибки называют случайными, а закон их распределения – случайными функциями.

При определении суммарной точности прибора складывают крайние данные в пределах допуска, суммированию подвергаются все ошибки по правилам теории вероятности. Несмотря на большое множество случайных величин, среди них все же есть такие, которые остаются постоянными при разных положениях или перемещениях механизма.

Поиск и определение характеристик случайной величины (ошибок) подводится к нахождению.

Для определения значений существует много методов, вплоть до табличных.

Краткий алгоритм расчета заданной точности для партии однородных механизмов (приборов):

1) уточняем, каковы ошибки выбранной схемы механизма (прибора);

2) распределяем ошибки по составным частям устройства, определив их как частные сортируем, отбросив незначительные;

3) для каждой частной (первичной) ошибки нужно определить границы допуска (характеристики ?0,?,?,?)

Вы читаете Приборостроение
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×