3) Маятниковый силоизмеритель. У этих машин шкала не линейна и применяются они с пределом измерения до 150 кГ.
Уравнение шкалы для этих машин имеет вид:
в этой формуле R – длина маятника до центра тяжести груза; r – радиус сектора подвеса верхнего зажима; Q – вес маятника; х – угол поворота маятника, зависит от веса маятника.
Как любому прибору, силоизмерителям также свойственна случайная погрешность, которая зависит от самых разнообразных факторов.
Если требуется испытание материалов на большую прочность (150 < P < 500 кГ), то пользуются силоизме-рителями с равномерной шкалой. Как правило, такие машины имеют корректировку; расчет этих машин проводится по формуле:
где R – длина маятника до центра тяжести; r– длина плеча подвеса; Q – вес маятника; р – измеряемое усилие; ? – угол между горизонтальной прямой, соединяющей оси подвеса маятника и точку подвеса верхнего зажима перед нагружением образца; х – угол поворота маятника.
Равномерность шкалы обеспечена, если углы x = ?.
Силоизмерители гидравлико-маятникового типа, применяются для испытаний материалов на изгиб, растяжение, сжатие и т. д.
Предел измерений – 20—1500 m.
Расчет для этих силоизмерителей производится по формуле:
47. Контактные методы измерения температуры
Для измерения температуры используются следующие методы.
1. Контактные методы – предполагают наличие надежного контакта с предметом, у которого снимается температура. При таком контакте пределы измерения измеряемой температуры определяются механическими (жаропрочность) и химическими свойствами материала, из которого изготовлен чувствительный элемент термометра.
Верхний предел измеряемых температур ограничен из-за ограничения вышеназванных свойств материала датчика с показателем 2500–3000
Чувствительность термометра (на 1 °C)
измеряется в миллиметрах.
Их основная характеристика – температурный коэффициент сопротивления:
где В – некоторая постоянная, определяется по таблице и измеряется в кельвинах, Т – температура, К.
Чувствительный элемент у термометров сопротивления – это проволока, намотанная на жесткий изоляционный каркас.
Поскольку сопротивление металлов изменяется по закону (в зависимости от температуры)
R = r0(1 + xt),
где R0 —сопротивление до начала измерения; t – измеряемая температура, то, какими бы точными ни были изготовлены термометры, со временем даже золото и платина окисляются (например, окисью углерода СО), и в результате нарушается точность показаний прибора (термометра).
Для повышения устойчивости работы термометров, например, с платиновым датчиком, изготавливают проволоку с диаметром больше 1 мкм и регистрируют показания датчика с помощью моста из сопротивлений.
Широкое применение нашли термодатчики из сплавов двух металлов, которые могут быть использованы в разных сочетаниях.
Термическая электродвижущая сила меняется по закону:
? = x (T1-T2)
где T1, T2 – начальная и конечная (рабочая) температуры датчика при измерении, х – коэффициент термической электродвижущей силы, Мв/градус.
48. Бесконтактные методы измерения температуры
Бесконтактные методы измерения температуры. Методы также называют пирометрами. Их преимущества перед предыдущими в том, что из-за их мало-инерционности, которая повышает точность измерений, становится возможной регистрация температуры быстро изменяющихся объектов.
У пирометров вероятный предел измерения не ограничен: однако это не значит, что их нельзя применять для измерения температур в других диапазонах.
Погрешности в показаниях пирометров, к тому же немалые, вызваны необходимостью введения различных поправок при градуировании шкалы прибора.
Пирометры работают по следующему принципу. Из курса атомной и ядерной физики известно, что если имеется абсолютно черное тело с температурой Т, то полная энергия его излучения связана с температурой уравнением:
в котором ? = 5,75 ?10-12 вт ? см2 ? град-4– постоянная.
При этом имеется такая энергия, которая излучается с площади 1 см2 черного тела за 1 с.
Однако ни одно физическое тело в действительности не является абсолютным черным телом.
Поэтому температуру нагретого тела определяют по формуле
в которой ET определяется эмпирически или из таблицы, является коэффициентом черноты полного излучения.
В пирометрах для компенсации изменений в окружающей среде применяются компенсаторы в виде катушек из никелевой проволоки с конструктивным оформлением в виде термобатареи.
Визирование на расстоянии 1 м от излучателя – это номинальное визирование. Определение погрешности параметра сводится к определению
?? = (?2 – ?1),
где ?2, – практическая термическая электродвижущая сила черного тела (излучателя); ?1 – табличные данные термической электродвижущей силы пирометра с соответствующим телескопом (устройство, которое служит для концентрации излучения источника (черного тела) на термоприемник (датчик), состоит из многослойной термобатареи и оптической системы).
Инерционность пирометра – это время, требуемое для установления термической электродвижущей силы, равной 99 % от табличных данных термической электродвижущей силы при комнатной температуре 20 ± 2 °C.
49. Приборы для измерения давления
Давление – это напряженность жидкостей и газов, а также паров, которую формирует некоторое внешнее воздействие на них.
Как измерять эту напряженность?
С этой целью измеряют данные, приходящие на единичную площадь той поверхности, на которую приложено это усилие: причем усилие распределено нормально и равномерно по этой поверхности.
Это усилие определяется с помощью датчика. После данные датчика (датчиков) преобразуются в сигналы упругости, электричества и т. п.
Может случиться, что усилие на поверхности, т. е. напряженность среды, настолько мала, что чувствительность датчиков не может «замечать» это: тогда пользуются другими свойствами среды: теплопрово-димостью, степенью ионизации и другими свойствами, связанными с давлением.
Когда измеряется давление газов, то в определенных пределах его изменение с повышением высоты не учитывается.
С жидкостью же, наоборот: из курса «Гидравлика» известно, что увеличение глубины и давления имеют отношение прямой пропорциональности.
P = ?0 + ?z;
где: P – искомое или измеряемое давление; ?0 – давление, которое воздействует на поверхность жидкости; ? – удельный вес поверхности, на которую действует давление ?0; z –