делающими до 200 взмахов в секунду, может усиливать значение хорошо известного «виляющего» танца (гл. 7) и нести какую-то информацию о местонахождении источника нектара. Другие насекомые производят звуки более сложными способами. Стрекотание кузнечиков и сверчков также является брачной песней, но насекомые производят эти звуки при помощи трения ногой по зубчатому краю крыла или посредством трения крыльев друг о друга.

Трудно представить себе, что такие сравнительно примитивные животные, как насекомые, получают удовольствие от ухаживания и особенно от «песен»; однако ритуал ухаживания — это не только способ, с помощью которого животные разного пола находят друг друга, а зачастую и приводят друг друга в состояние готовности к размножению, но также и гарантия того, что животное спарится только с особью своего вида, а не с представителем какой-либо родственной формы. Эти факторы так же важны для насекомых, как и для птиц и млекопитающих, однако значение их в поведении стало ясным только после создания аппаратуры для «подслушивания» звуков, издаваемых насекомыми.

Поскольку животные издают звуки, кажется вполне вероятным, что они должны уметь их воспринимать, т. е. у них должны быть органы слуха. В настоящее время известно лишь несколько видов насекомых, у которых найдены органы слуха; возможно, по мере дальнейшего исследования эти органы будут найдены и у других насекомых. Строение органов слуха насекомых очень разнообразно: от простых волосков, выступающих из твердого покрова насекомых и прикрепленных своим основанием к отдельной сенсорной клетке, до весьма сложных структур, напоминающих уши позвоночных. Однако сходство в этом случае лишь внешнее. Не совсем верно говорить об ухе насекомых, поскольку такое «ухо» функционирует иначе, чем ухо позвоночных, и чувствительно к другим свойствам звука.

В начале этого века наши знания обогатились данными энтомолога Регена, который проводил эксперименты со сверчками. Посадив самца под стеклянную чашку, он обнаружил, что находящиеся поблизости самки не обращали на него никакого внимания, хотя он был хорошо виден. Однако, когда звуки, издаваемые самцом, передали по телефону, самки собрались вокруг громкоговорителя. Таким образом, самок привлекал звук, а не вид самца. Эти опыты позволили в какой-то степени выяснить физиологические механизмы слуха сверчков. Оказалось, что воспроизводимые громкоговорителем звуки привлекали самок даже тогда, когда были сильно искажены и человеку казались совершенно непохожими на стрекотание сверчка. Другие насекомые также обладали способностью распознавать звуки, ничего не означавшие для человека.

Эта загадка разрешилась спустя несколько лет, когда был разработан метод регистрации импульсов, пробегающих по нерву, который отходит от органа слуха насекомого. С помощью такого метода стало возможно записать точную реакцию органа слуха на определенный звук и таким образом установить, на какие свойства исследуемого звука отвечает этот орган. Метод регистрации в сущности очень прост: к нерву насекомого, идущему от одного из органов слуха, присоединяют тонкие проволочные электроды. Проходящие по нерву импульсы усиливаются и подаются на осциллоскоп. Эти эксперименты, проводимые под наркозом на саранче, сверчках и других крупных насекомых, сходны с опытами по изучению чувствительности уха кенгуровой крысы, которые были описаны в предыдущей главе. На анестезированных насекомых воздействовали звуками различной частоты и регистрировали характер ответа. Оказалось, что разные насекомые чувствительны к весьма различным диапазонам частот. У сверчков обнаружена чувствительность к частотам 250…10000 Гц, у кузнечиков — к частотам 800…45 000 Гц, относящимся главным образом к ультразвуковому диапазону, а некоторые ночные бабочки из семейства Noctuidae реагируют на звуки частотой до 150000 Гц. Биологическое значение способности этих бабочек слышать ультразвуки станет понятным в следующей главе, где показано, что они способны улавливать ультразвуковые импульсы, которыми пользуются летучие мыши для обнаружения своей жертвы.

Осциллограммы, полученные в экспериментах, описанных выше, свидетельствуют о том, что ни одна характеристика попадающего в слуховой орган звука, за исключением его интенсивности, не влияет на характер нервного ответа. По мере увеличения громкости звука возрастает частота бегущих по нерву импульсов. Не заметно никакой реакции на частоту звука, аналогичной возникновению кохлеарных микрофонных потенциалов в ухе человека. Было обнаружено, например, что органы слуха саранчи очень чувствительны к звукам частотой около 8000 Гц, но ответ нерва на такие звуки не имел никаких характерных признаков. Однако опыты Регена показали, что насекомые способны различать отдельные звуки, поскольку самок сверчков привлекали звуки, издаваемые только самцами того же вида. По-видимому, существует какая-то особенность звука, которую могут анализировать слуховые органы и которую сверчки способны распознавать. Дальнейшие эксперименты с использованием осциллоскопа показали, что особенностью звука, к которой чувствительны насекомые, является импульсная модуляция.

Фиг. 8. Амплитудная модуляция

А. Смодулированные звуковые колебания частотой 1000 Гц.

Б. Модулирующие колебания частотой 400 Гц наложены на несущие колебания, имеющие частоту 1000 Гц.

В. Модулирующая волна «прерывается», благодаря чему получается импульсная модуляция.

Звук чистого тона, т. е. звуковые колебания постоянной частоты, называется несущей волной (фиг. 8, А). Не меняя ее частоту, можно изменять ее амплитуду, или интенсивность. Более того, это изменение можно производить через равные промежутки времени, так что амплитуда будет меняться с определенной частотой независимо от частоты несущей волны (фиг. 8, Б). Следовательно, частота изменения амплитуды накладывается на частоту несущей волны. Первая называется частотой модуляции несущей волны. В примере, показанном на фиг. 8, Б, частота модуляции равна 400 Гц, а частота несущей волны составляет 1000 Гц. Модуляция не обязательно должна представлять собой ритмические изменения амплитуды, показанные на фиг. 8, Б; она может проявляться в разбиении несущей волны на отдельные импульсы (фиг. 8, В); в этом случае она называется импульсной модуляцией. В радиотелеграфии используется один из видов импульсной модуляции: генерируемая в передатчике несущая волна модулируется при помощи ключа в серии точек и тире (азбука Морзе).

Фиг. 9. Упрощенная схема характера звуковых колебаний в двухфазной «песне» сверчка

Возвратимся вновь к насекомым. Чувствительность этих животных к импульсной модуляции показывает, что они общаются между собой с помощью своеобразной азбуки Морзе. Стрекотание самца сверчка представляет собой звуки, модулированные импульсами определенной конфигурации (фиг. 9), которая имеет особое значение для самок того же вида. Если орган слуха находящегося под наркозом насекомого стимулировать звуком частотой 8000 Гц, в характере нервных импульсов не наблюдается никаких специфических особенностей. Но когда этот звук модулируется частотами до 300 Гц, нервы передают вспышки импульсов, соответствующие модулирующим частотам. Картина этих вспышек не меняется при изменениях несущей частоты.

Этим объясняется, почему самки сверчков в экспериментах Регена реагировали на искаженные звуки, передававшиеся по телефону. Ухо человека чувствительно к изменениям частоты несущей волны, тогда как орган слуха сверчка чувствителен только к модулирующим частотам. Телефон искажал несущие волны, а не характер модуляции, поэтому насекомые не обнаруживали никакой разницы в сигналах.

Различия в особенностях слуха насекомых и человека определяются строением их органов слуха. Последние улавливают либо изменения давления, которое оказывают на мембрану звуковые волны, либо степень ее смещения под действием этих волн. Ухо позвоночного животного представляет собой детектор давления, состоящий из камеры — среднего уха, на одну сторону которой натянута мембрана — барабанная перепонка (фиг. 10, А). По обе стороны мембраны поддерживается одинаковое давление с помощью своеобразного клапана — евстахиевой трубы, которая открывается в заднюю часть ротовой полости. «Пощелкивание», возникающее в ушах, когда мы взлетаем на самолете или съезжаем вниз с крутого холма, обусловлено открыванием евстахиевой трубы, для того чтобы впустить или выпустить воздух и таким образом выровнять давление на барабанную перепонку. Следовательно, среднее ухо представляет собой замкнутую камеру, в которой поддерживается постоянное давление, и поэтому небольшие колебания давления снаружи от барабанной перепонки при действии звуковых волн заставляют ее колебаться; колебания барабанной перепонки создают изменения давления, которые передаются во внутреннее ухо.

Фиг. 10. Схематическое изображение уха позвоночного, чувствительного к давлению (А), и принципиально отличающегося от него органа слуха насекомого, который воспринимает перемещение воздуха (Б)

Ухо позвоночного представляет собой закрытую камеру, а слуховой орган насекомого — камеру, открытую с одной стороны.

Органы слуха кузнечиков (фиг. 11), сверчков, ночных бабочек и родственных видов представляют собой детекторы смещения. Они называются тимпанальными органами (tympanum — барабан) по сходству с мембраной барабана; однако в отличие от барабанной перепонки позвоночных тимпанальная полость у насекомых с одного конца открыта (фиг. 10, Б). При действии звуков на мембрану практически не возникает никакой разницы в давлении по обе стороны от нее и поэтому мембрана изгибается в соответствии с перемещениями воздуха. Чувствительные клетки располагаются у края мембраны и регистрируют степень ее изгиба. Волоски и антенны, выполняющие роль органов слуха у некоторых других насекомых, действуют по существу сходным образом, с той разницей, что они не окружены камерой. Поскольку давление действует во всех направлениях одинаково, одним ухом, лишенным ушной раковины, позвоночное не может определить направление звука. Смещение же является направленным; максимальное смещение происходит тогда, когда мембрана расположена как раз напротив источника звука и, таким образом, органы слуха насекомых могут определять направление звука. Это означает, что насекомое может определить, откуда приходит звук, даже с помощью одного из органов слуха, и блокирование второго практически не мешает самке сверчка определить местонахождение «поющего» самца.

Фиг. 11. Упрощенное изображение слухового органа кузнечика, расположенного на его передней ноге

Воздушная трубочка открыта наружу, подобно камере на фиг. 10, Б. 1 — рецепторы; 2 — мембраны; 3 — воздушная трубочка.

Существует предположение, что способность насекомых определять, откуда приходит звук, связана с движениями их ног. Слуховые органы обнаружены у насекомых на различных частях тела. У кузнечиков и сверчков эти органы находятся на голенях передних ног — нелепое место для сенсорного органа с точки зрения человека, но весьма удобное для кузнечика; ведь функция его органа слуха — управлять движениями ног таким образом, чтобы насекомое перемещалось в том направлении, откуда приходит звук. При движении кузнечика ноги его совершают дугообразные колебания и органы слуха сканируют пространство по обе стороны от насекомого. Каждый слуховой орган очень чувствителен к звукам, приходящим к нему под определенным углом. Поэтому, когда ноги, совершая круговые движения, приближаются к источнику звука или удаляются от него, нервные импульсы то резко усиливаются, то затухают, а центральная нервная система анализирует эту информацию и определяет направление, откуда приходит звук.

Теперь мы располагаем значительно более полными сведениями о песнях сверчков, чем когда-то показал Реген в опытах с телефоном. Во-первых, песни самцов привлекают только девственных самок, а оплодотворенные самки не обращают на них никакого внимания. Во-вторых, у каждого вида имеется несколько песен, исполняемых в различных ситуациях. У некоторых видов число таких песен может достигать дюжины; это было давно подмечено китайцами, которые держат у себя сверчков и даже разводят их из-за песен. Обычную призывную песню сверчков исполняет либо одинокий самец, либо несколько самцов вместе. Эти песни служат для того, чтобы привлечь самок или собрать самцов вместе, облегчая самке их обнаружение. В присутствии самки самец исполняет «серенаду», сменяющуюся брачной песней, непосредственно после которой происходит спаривание. Во время спаривания, если самка выразит беспокойство, самец может начать петь другую песню; если же ему помешает другой самец, они исполнят «дуэт соперников».

Кроме серенад и брачных песен, у сверчков и многих других насекомых существуют сигналы тревоги и предостережения, обычно представляющие собой громкие звуки, которые можно услышать, если прикоснуться к насекомому. По-видимому, эти сигналы служат для отпугивания врагов. Существуют мухи, которые для своей защиты имитируют жужжание осы, чем вводят в заблуждение своих врагов, которые ошибочно принимают их за этих жалящих насекомых. Довольно обычна у безобидных насекомых и подражательная окраска, имитирующая окраску ядовитых видов. Летом на лесных опушках над зарослями кервеля парят целые рои мушек, брюшко которых имеет полосатую, черную с желтым окраску, напоминая брюшко пчел или ос. После того как птицы съедят несколько ядовитых насекомых, они начинают избегать любых насекомых с желтыми и черными полосками, в

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату
×