стимулов. В простом случае один из них побуждает систему действовать согласно стимулам, другой — избавляться от них. Тогда, заметьте, пожалуйста, системе безразлично, что собственно вмешивается в нее.

Действующие в реальной жизни системы управления, конечно, намного богаче; масса импульсов пробегает через огромное число входных и выходных каналов. Это справедливо как в отношении организма человека, так и в отношении управленческих ситуаций. Этот факт не меняет базовой структуры сенсорных и моторных узлов в цепи управления; однако при рассмотрении операций переключения, которые подготавливают решения, мы должны принимать во внимание то, что в больших комплексных системах этот процесс никогда не сводится к столь простому переключению, как в нашей схеме (рис.6.).

В частном случае управления техническими средствами такая процедура переключения вполне понятна. Закономерность, отображающая такую процедуру, известна как функция преобразования, поскольку она математически указывает, какого сорта преобразования происходят между сенсорными и моторными узлами в цепи управления. Функция преобразования математически описывается дифференциальным уравнением и может быть весьма сложной. Сложность возникает потому, что характер реакции системы часто определяется диапазоном стимулирования, вызванного данным стимулом или частотой, с которой происходит стимулирование. В живых системах управления самым наглядным примером осуществления функции преобразования является деятельность нейрона или отдельной нервной клетки. Как утверждает Маккулох, функция преобразования в этом случае будет весьма сложной и описывается нелинейным дифференциальным уравнением восьмого порядка. Мозг человека состоит, вероятно, из 10 000 000 000 нейронов, и, насколько мы знаем, нет двух из них, функции преобразования которых были бы одинаковы. Мы столкнемся с проблемой именно такого порядка при обсуждении функции преобразования руководителя. Решение, принимаемое в деловом мире, может касаться десятка руководителей, но это просто в сравнении с несколькими тысячами нейронов, функцию преобразования, управляющую нейронами, совершенно невозможно составить (если бы в этом было дело), поскольку она есть некоторая сумма взаимодействующих нейронов мозга. И нам это известно.

  Дальнейшее еще сложнее. При рассмотрении управления системой я целом, что является нашей конечной целью, мы вполне можем столкнуться с тем, что не удастся даже опознать отдельные входные и выходные каналы, а удастся идентифицировать лишьих целые связки Еще меньше наши возможности в отношении идентификации индивидуальных переключателей, преобразующие функции которых по этой причине не могут быть исследованы и еще менее могут быть измерены. Тому есть существенные причины, обусловленные физиологическими структурами, такими как нервная система, и в социальных структурах, таких как корпорации и фирмы. В подобных случаях сенсорные входные данные поступают в сенсориум распределенно, а триггеры моторных действий тоже распределены широко и достаточно плотно не только по всей периферии системы, но и между точками А и В, о которых мы ранее упомянули. Проблема переключения, следовательно, охватывает весь набор входящих и весь набор выходящих импульсов. Следовательно, вместо одного переключателя между ними необходимо иметь сложную соединительную сеть. Такая сеть называется по латыни reticulum (сеточка, сетчатое образование), а ее кибернетический вариант называется anastomotic . Это указывает на тот факт, что множество ветвей такой сети взаимодействуют целесообразно, но невозможно разобраться в том, как поступает сигнал в ретикулум. Этот термин просто означает что каналы вывода заканчиваются как дельта реки — множество потоков вливается в море и такие потоки, кроме того, часто переплетаются один с другим. Нет никакой возможности проследить, каким путем данная пригоршня воды попадает в море, как нет способа указать на то, из какого протока или источника она туда поступает.

Весьма важно усвоить это замечание об анастомотик ретикулум, поскольку процесс принятия решения как в организме человека, так и в сообществе руководителей осуществляется именно так. Мы видим информацию, которая была получена, видим предпринятые действия, эффекторные и аффекторные каналы, через которые эти меры осуществлялись, и только.

В этих условиях разумно перейти к электрической модели и попытаться построить систему переключателей, лежащую в основе цепи принятия решений. Более того, при рассмотрении рис.6 казалось разумным представить эти соединения как переключатели (А и В). Так можно было поступить, поскольку мы рассматривали простейший случай. Без сомнения, бывают простые случаи и в управлении, когда управляющий, отвечая по телефону, говорит, что следует взять курс А или В — решение принято, и он кладет трубку. В подобных случаях функция преобразования может быть выражена через минимизацию стоимости решения. Но это тривиальный случай. Обычно также трудно сказать, какие внутренние причины повлияют на группу руководителей, принимающих решение о том, как проследить путь воды в дельте реки. Поэтому, чтобы сделать модель более реальной, мы должны видоизменить главную цепь (рис.6) и представить ее, как показано на рис.7.

Рис. 7

Применительно к этому новому варианту модели важно подчеркнуть следующее: стимулы возбуждают целую колонию входных преобразователей или сенсоров, а реакция системы осуществляется через целую колонию выходных преобразователей (или эффекторов). Оба этих набора преобразователей служат передатчиками импульсов через множество каналов. Сенсориум и связанный с ним переключатель заменены своего рода коробкой, имеющей сенсорную панель сзади и моторную панель спереди. Эти панели соединены своеобразной сетью переключающей системы, которую мы назвали анастомотик ретикулум.

Все сказанное в этой главе до сих пор касалось управления большими комплексными системами исходя из первых принципов, хотя введенные термины имели явно биологический оттенок. Был упомянут также инженер-автоматчик, но в основном с тем, чтобы сказать, что он не в состоянии чем-то помочь нам! Однако теперь он снова выступает на авансцену, чтобы ввести новый термин — важнейшую концепцию из всех — обратную связь. Прежде всего заметим, что было бы ошибкой принять связь между стимулом и ответной реакцией за систему обратной связи. Этот термин стал настолько вольно использоваться в ряде мест, что почти всякая реакция на любое действие принимается за обратную связь. Содержание этого термина следует вскрыть с известной осторожностью, поскольку он относится к фундаментальным понятиям кибернетики. Для его объяснения нам придется привести небольшое математическое описание в самой общей форме в надежде на то, что это поможет правильно понять термин даже читателям, далеким от математики.

В системе есть входные и выходные сигналы. То, что происходит внутри системы и превращает первое во второе, уже было названо преобразованием и описывается функцией преобразования. В технике управления, как говорилось, функция преобразования описывается дифференциальным уравнением, которое определяет скорость преобразования во времени входных величин в выходные. Оператор в этом преобразовании обычно обозначается буквой 'р'. Нет необходимости детализировать это уравнение, достаточно упомянуть, что оно в общем является функцией оператора р . Как говорилось ранее, функция преобразования нейрона может быть достаточно хорошо описана нелинейным дифференциальным уравнением восьмого порядка, однако ее тоже можно записать как f ( p ). Беда в том, конечно, что хотя и можно ее так записать, в действительности мы ее не знаем. Трудность здесь точно такая же, как в заявлении 'пусть х есть число жителей в данном городе'. Далее мы свободно пользуемся параметром х в наших расчетах, и, по-видимому, можно было бы подсчитать число семей в городе как функцию от х, но рано или поздно нам придется выяснить, что же стоит за числом х.

В технике управления существуют методы точного определения дифференциального уравнения функции f ( p ). Прежде всего она устанавливает связь между входной и выходной величинами. Это означает, что мы можем определить f ( p ) = o / i , где i — входная переменная; о — выходная переменная величина. Когда дело идет об электрических цепях управления, входная и выходная величины поддаются непосредственному измерению. Более того, если можно построить график зависимости выходной величины от входной во всем диапазоне их изменений, то можно с уверенностью считать наличие зависимости между ними. Функция преобразования и есть уравнение, описывающее такую зависимость. Она может быть очень сложной, но ее можно найти, особенно потому, что мы обычно располагаем множеством доступной информации относительно переключателей и цепей, из которых состоит изучаемая система. Знание структуры системы позволяет математикам предсказывать вид требуемого в данном случае уравнения. Найти

Вы читаете Мозг Фирмы
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату